# `r paste0(params$country, " - ",params$year) ` knitr::opts_chunk$set(echo = FALSE, comment = "#>", message=FALSE, warning=FALSE, fig.width = 6.3, fig.asp = 0.618, fig.retina = 2, fig.align = "center", fig.showtext = TRUE, dev = "ragg_png", dpi = 300) library(testthat) library(ggplot2) library(unhcrthemes) ## make sure to get last version of the data if ( packageVersion("ForcedDisplacementStat") != "0.0.1"){pak::pkg_install("edouard-legoupil/ForcedDisplacementStat")} library(ForcedDisplacementStat) ## make sure to get last version of the chart library if ( packageVersion("unhcrdatapackage") != "0.1.8"){pak::pkg_install("edouard-legoupil/unhcrdatapackage")} library(unhcrdatapackage) theme_set( unhcrthemes::theme_unhcr())
```{css, echo=FALSE} .col-ruler { column-rule: 2px solid #0072bc; column-gap: 30px; }
.center { text-align: center; }
## Population group in the region ```r plot_reg_treemap(year = params$year, region = params$region)
plot_reg_share(year = params$year, region = params$region, pop_type = "REF")
plot_reg_share(year = params$year, region = params$region, pop_type = "ASY")
plot_reg_share(year = params$year, region = params$region, pop_type = "OIP")
plot_reg_share(year = params$year, region = params$region, pop_type = "IDP")
plot_reg_share(year = 2022, region = params$region, pop_type = "STA")
plot_reg_evolution(year = params$year, region = params$region, lag = 5, pop_type = c( "REF", "IDP", "ASY", "OOC", "STA", "OIP"))
## How the different Categories of Population of concern to UNHCR are evolving over time? # According to official information provided by government authorities, as of December `r params$year`, the population of interest to UNHCR in `r params$country` reached `r format(round(total_poc, 0), big.mark=",")` people. Compared to `r as.numeric(params$year)-1`, the total population `r ifelse(perc_change_poc>0, paste0("has increased ", format(round(perc_change_poc, 1), big.mark=","), "% during the year"), ifelse(perc_change_poc<0, paste0("has decreased ", format(round(perc_change_poc, 1), big.mark=","), "% during the year"), "has not changed"))`. Moreover, there was a `r format(round(perc_change_asy_ref, 0), big.mark=",")`% `r ifelse(perc_change_asy_ref>0, "growth", ifelse(perc_change_asy_ref<0, "drop","change"))` of refugees and asylum seekers in the country. plot_reg_population_type_per_year(year = params$year, region = params$region, lag = 5, pop_type = c("REF", "ASY", "OIP", "OOC", "STA", "IDP" ))
plot_reg_population_type_abs(year = params$year, region = params$region, top_n_countries = 5, pop_type = "REF" )
plot_reg_population_type_abs(year = params$year, region = params$region, top_n_countries = 5, pop_type = "ASY" )
plot_reg_decrease(year = params$year, region = params$region, lag = 5, topn = 5, pop_type = c("REF", "ASY", "OIP"))
plot_reg_increase(year = params$year, region = params$region, lag = params$lag, topn = 5, pop_type = c("REF", "ASY", "OIP"))
plot_reg_map( year = params$year, region = params$region, topn = 5, pop_type = c("REF", "ASY", "OIP"), projection = "Mercator", maxSymbolsize = .25)
plot_reg_origin_dest(year = params$year, region = params$region)
plot_reg_prop_origin(year = params$year, region = params$region)
plot_reg_solution(year = params$year, region = params$region, lag = params$lag)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.