knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(unhcrdatapackage)
Templates are re-built notebook that includes all the plotting functions above and are integrated with report parameters. Templates are available both as html report (that can be converted to PDF) and as PowerPoint presentations, all defined from UNHCR standard brand (cf unhcrdown. The templates are available either for countries or regions.
## generate for one country # template_CtryFactsheet(year = 2022, country_asylum_iso3c = "USA", folder = "Report") # ## Generate for a specific region # region <- "Americas" # year <- 2022 # library(tidyverse) # ## get all countries with more than 1000 Reported individuals # ctr <- dplyr::left_join( x= ForcedDisplacementStat::end_year_population_totals_long, # y= ForcedDisplacementStat::reference, # by = c("CountryAsylumCode" = "iso_3")) |> # filter(Year == year & # UNHCRBureau == region ) |> # group_by( CountryAsylumName, CountryAsylumCode ) |> # summarise(Value = sum(Value) ) |> # ungroup() |> # filter( Value > 1000 ) # # for ( i in (1:nrow(ctr))) { # # i <- 1 # country_asylum_iso3ci = as.character(ctr[i ,2 ]) # cat(paste0(country_asylum_iso3ci, "\n")) # unhcrdatapackage::template_CtryFactsheet(year = 2022, # country_asylum_iso3c = country_asylum_iso3ci, # folder = "Report") }
## generate for one country # unhcrdatapackage::template_CtryPrez(year = 2022, # country_asylum_iso3c = "CHL", # folder = "Report") # ## Generate for a specific region # region <- "Americas" # year <- 2022 # library(tidyverse) # ## get all countries with more than 1000 Reported individuals # ctr <- dplyr::left_join( x= ForcedDisplacementStat::end_year_population_totals_long, # y= ForcedDisplacementStat::reference, # by = c("CountryAsylumCode" = "iso_3")) |> # filter(Year == year & # UNHCRBureau == region ) |> # group_by( CountryAsylumName, CountryAsylumCode ) |> # summarise(Value = sum(Value) ) |> # ungroup() |> # filter( Value > 1000 ) # # for ( i in (1:nrow(ctr))) { # # i <- 1 # country_asylum_iso3ci = as.character(ctr[i ,2 ]) # cat(paste0(country_asylum_iso3ci, "\n")) # unhcrdatapackage::template_CtryFactsheet(year = 2022, # country_asylum_iso3c = country_asylum_iso3ci, # folder = "Report") }
## generate for one country # unhcrdatapackage::template_Ctryslides(year = 2022, # country_asylum_iso3c = "CHL", # folder = "Report") # ## Generate for a specific region # region <- "Americas" # year <- 2022 # library(tidyverse) # ## get all countries with more than 1000 Reported individuals # ctr <- dplyr::left_join( x= ForcedDisplacementStat::end_year_population_totals_long, # y= ForcedDisplacementStat::reference, # by = c("CountryAsylumCode" = "iso_3")) |> # filter(Year == year & # UNHCRBureau == region ) |> # group_by( CountryAsylumName, CountryAsylumCode ) |> # summarise(Value = sum(Value) ) |> # ungroup() |> # filter( Value > 1000 ) # # for ( i in (1:nrow(ctr))) { # # i <- 1 # country_asylum_iso3ci = as.character(ctr[i ,2 ]) # cat(paste0(country_asylum_iso3ci, "\n")) # unhcrdatapackage::template_CtryFactsheet(year = 2022, # country_asylum_iso3c = country_asylum_iso3ci, # folder = "docs/factsheet") }
# template_RegFactsheet(year = 2022, # region = "Europe", lag = 10, # folder = "Report") ## We can also generate all factsheets in a loop for 2022 # region <- ForcedDisplacementStat::reference |> # dplyr::distinct(UNHCRBureau) |> # dplyr::filter(!(is.na(UNHCRBureau))) |> # dplyr::pull() # # for( reg in region) { # unhcrdatapackage::template_RegFactsheet(year = 2022, # region = reg, lag = 10, # folder = "Report") # }
# template_RegPrez(year = 2022, region = "Americas", lag = 10, folder = "Report") # # Generate for a specific region # region <- "Americas" # year <- 2022 # library(tidyverse) # ## get all countries with more than 1000 Reported individuals # ctr <- dplyr::left_join( x= ForcedDisplacementStat::end_year_population_totals_long, # y= ForcedDisplacementStat::reference, # by = c("CountryAsylumCode" = "iso_3")) |> # filter(Year == year & # UNHCRBureau == region ) |> # group_by( CountryAsylumName, CountryAsylumCode ) |> # summarise(Value = sum(Value) ) |> # ungroup() |> # filter( Value > 1000 ) # # for ( i in (1:nrow(ctr))) { # # i <- 1 # country_asylum_iso3c = as.character(ctr[i ,2 ]) # cat(paste0(country_asylum_iso3c, "\n")) # unhcrdatapackage::template_CtryPrez(year = 2022, # country_asylum_iso3c = country_asylum_iso3c, # folder = "Report") # }
A shinyGadget to add annotation to a ggplot2!..
Based on https://github.com/MattCowgill/ggannotate also inspired from https://community.rstudio.com/t/graph-annotator-shiny-contest-submission/104687
Once the button "Position the annotation on the chart" is launched:
a window with the chart -
click first time to indicate the top-left point to position the infobox
# if (interactive()) # thischart <- plot_ctr_population_type_abs(year = 2020, # country_asylum_iso3c = "USA", # top_n_countries = 4, # pop_type = "REF" # ) # annotate_gadget(chart = thischart, viewer=paneViewer())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.