Man pages for EdwinGraham/EdNet
Train deep neural networks for classification and regression

devianceBernoulliFunction to calculate deviance for model predictions assuming...
devianceCategoricalFunction to calculate deviance for model predictions assuming...
devianceGammaFunction to calculate deviance for model predictions assuming...
devianceNormalFunction to calculate deviance for model predictions assuming...
deviancePoissonFunction to calculate deviance for model predictions assuming...
devianceTweedieFunction to calculate deviance for model predictions assuming...
dfBinaryRandom data for binary classification example.
dfGammaRandom data for Gamma distribution regression example.
dfPoissonRandom data for Poisson process regression example.
dfTweedieRandom data for compound Poisson-Gamma process regression...
EdNetTrainTrain a neural network model
normaliseNormalise a vector
onehotEncodeOne-hot encode a factor
predictedClassConverts class probabilities into a predicted class
predict.EdNetModelPredict for EdNetModel objects
reluCompute relu function on vector
sigmoidCompute sigmoid function on vector
EdwinGraham/EdNet documentation built on May 6, 2019, 12:22 p.m.