library(ettie) library(mlr) data <- compile.dataset() data$events <- make.features(data$events) # or (when data is backed up) #data <- list( # events = fst::read.fst('../data/events-20190107.fst'), # matches = fst::read.fst('../data/matches-20190107.fst') #) input <- build.input(data) results <- run.benchmark(input, parallel = TRUE) performances <- getBMRAggrPerformances(results, as.df = TRUE)
library(dplyr) library(ggpubr) library(tidyr) performances.per.measure <- performances %>% gather(measure, mean, -task.id, -learner.id) %>% mutate( learner.id=sub("^classif\\.(.*?)(\\.tuned)?$", "\\1", learner.id), measure=recode(measure, kappa.test.mean="Cohen's kappa", logloss.test.mean="Logarithmic loss", acc.test.mean="Accuracy", multiclass.aunu.test.mean="AUC", multiclass.brier.test.mean="Brier score", multiclass.mcc.test.mean="Matthews correlation coefficient") ) ggbarplot(performances.per.measure, x = 'learner.id', y = 'mean', fill = 'learner.id', color = 'learner.id', xlab = FALSE, ylab = FALSE, x.text.angle = 45, legend = 'none') + facet_wrap('measure', scales='free_y')
extraTrees, glmnet e lda se destacam
library(iml) #plotCalibration(generateCalibrationData(results, breaks = seq(0, 1, 0.05))) #doParallel::registerDoParallel() features.et <- c( "avg.recovery.time.team", "avg.player.possession.team", "avg.team.possession.team", "shots.team", "expulsions.team", "passes.team", "successful.passes.team", "corners.team", "fouls.team", "home" ) models.et <- getBMRModels(results, 'match.result', 'classif.glmnet.tuned', drop = TRUE) predictor.et <- Predictor$new(models.et[[1]], input) ale.et <- FeatureEffects$new(predictor.et, features.et, "ale") ale.et$plot(ncols = 2) ice.et <- FeatureEffects$new(predictor.et, features.et, "ice") ice.et$plot(ncols = 2) lime.et <- LocalModel$new(predictor.et, input[1,], k = 10) plot(lime.et) shapley.et <- Shapley$new(predictor.et, input[1,]) shapley.et$plot() # VIN # Friedman H # LIME/aLIME # SHAP
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.