r descr_models("k_means", "ClusterR")
defaults <- tibble::tibble(tidyclust = c("num_clusters"), default = c("no default")) param <- k_means() %>% set_engine("ClusterR") %>% set_mode("partition") %>% make_parameter_list(defaults)
This model has r nrow(param)
tuning parameters:
param$item
k_means(num_clusters = integer(1)) %>% set_engine("ClusterR") %>% set_mode("partition") %>% translate_tidyclust()
Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency vs interpretability of classifications. Biometrics, 21, 768–769.
Hartigan, J. A. and Wong, M. A. (1979). Algorithm AS 136: A K-means clustering algorithm. Applied Statistics, 28, 100–108. doi:10.2307/2346830.
Lloyd, S. P. (1957, 1982). Least squares quantization in PCM. Technical Note, Bell Laboratories. Published in 1982 in IEEE Transactions on Information Theory, 28, 128–137.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds L. M. Le Cam & J. Neyman, 1, pp. 281–297. Berkeley, CA: University of California Press.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.