r descr_models("k_means", "klaR")
defaults <- tibble::tibble(tidyclust = c("num_clusters"), default = c("no default")) param <- k_means() %>% set_engine("klaR") %>% set_mode("partition") %>% make_parameter_list(defaults)
This model has r nrow(param)
tuning parameters:
param$item
k_means(num_clusters = integer(1)) %>% set_engine("klaR") %>% set_mode("partition") %>% translate_tidyclust()
Only categorical variables are accepted, along with numerics with few unique values.
Huang, Z. (1997) A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining. in KDD: Techniques and Applications (H. Lu, H. Motoda and H. Luu, Eds.), pp. 21-34, World Scientific, Singapore.
MacQueen, J. (1967) Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds L. M. Le Cam & J. Neyman, 1, pp. 281-297. Berkeley, CA: University of California Press.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.