Description Usage Arguments Value Examples
View source: R/viz_decision_boundary.R
This function is mostly useful in an educational setting. Can only be used with trained workflow objects with 2 numeric predictor variables.
1 | viz_decision_boundary(x, new_data, resolution = 100, expand = 0.1)
|
x |
trained 'workflows::workflow' object. |
new_data |
A data frame or tibble for whom the preprocessing will be applied. |
resolution |
Number of squared in grid. Defaults to 100. |
expand |
Expansion rate. Defaults to 0.1. This means that the width and height of the shaded area is 10 data. The chart have been minimally modified to allow for easier styling. |
'ggplot2::ggplot' object
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | library(parsnip)
library(workflows)
svm_spec <- svm_rbf() %>%
set_mode("classification") %>%
set_engine("kernlab")
svm_fit <- workflow() %>%
add_formula(Species ~ Petal.Length + Petal.Width) %>%
add_model(svm_spec) %>%
fit(iris)
viz_decision_boundary(svm_fit, iris)
viz_decision_boundary(svm_fit, iris, resolution = 20)
viz_decision_boundary(svm_fit, iris, expand = 1)
svm_multi_fit <- workflow() %>%
add_formula(class ~ umap_1 + umap_2) %>%
add_model(svm_spec) %>%
fit(mnist_sample)
viz_decision_boundary(svm_multi_fit, mnist_sample)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.