View source: R/calc_hmw_functions.R
split_labor_by_sector | R Documentation |
Splits ILO labor data by sector
split_labor_by_sector(
.df,
hmw_analysis_data_path = MWTools::hmw_analysis_data_path(),
hmw_labor_map_sheet = MWTools::hmw_analysis_constants$hmw_labor_map_sheet,
unit = MWTools::mw_cols$unit,
hmw_region_code_col = MWTools::conc_cols$hmw_region_code_col,
sex_ilo_col = MWTools::ilo_cols$sex_ilo_col,
sector_col = MWTools::mw_constants$sector_col,
year = MWTools::mw_cols$year,
labor_type_col = MWTools::hmw_analysis_constants$labor_type_col,
labor_split_col = MWTools::hmw_analysis_constants$labor_split_col,
employed_persons_ilo_col = MWTools::ilo_cols$employed_persons_ilo_col,
total_wk_hrs_ilo_col = MWTools::hmw_analysis_constants$total_wk_hrs_ilo_col,
agriculture = MWTools::mw_sectors$agriculture_broad.sector,
industry = MWTools::mw_sectors$industry_broad.sector,
services = MWTools::mw_sectors$services_broad.sector
)
.df |
A data frame containing the number of hours worked by broad sector.
Usually produced by calling the
|
hmw_analysis_data_path |
See |
hmw_labor_map_sheet , labor_type_col , labor_split_col , total_wk_hrs_ilo_col |
See |
unit , year |
See |
hmw_region_code_col |
See |
sex_ilo_col , employed_persons_ilo_col |
See |
sector_col |
See |
agriculture , industry , services |
See |
ilo_working_hours_data <- read.csv(file = MWTools::ilo_working_hours_test_data_path())
ilo_employment_data <- read.csv(file = MWTools::ilo_employment_test_data_path())
hmw_data <- prepareRawILOData(ilo_working_hours_data = ilo_working_hours_data,
ilo_employment_data = ilo_employment_data)
working_hours_labor_type_data <- hmw_data |>
add_hmw_region_codes() |>
fill_ilo_data() |>
calc_total_hours_worked() |>
get_broad.sector_data() |>
split_labor_by_sector()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.