#' @title
#'
#' @description imp_plot_convergence()
#'
#' @param
#'
#' @param
#'
#' @return
#'
#' @note
#'
#' @author Antonio J Berlanga-Taylor, George Adams, Deborah Schneider-Luftman <\url{https://github.com/EpiCompBio/bigimp}>
#'
#' @seealso \code{\link{functioname}},
#' \code{\link[packagename]{functioname}}.
#'
#' @examples
#'
#' \dontrun{
#'
#'
#'
#' }
#'
#' @export
#'
# @importFrom pack func1
#'
imp_plot_convergence <- function(param1 = some_default,
...
) {
# Use this instead or library or require inside functions:
if (!requireNamespace('some_pkg', quietly = TRUE)) {
stop('Package some_pkg needed for this function to work. Please install it.',
call. = FALSE)
}
# this is from stats_utils/stats_utils/run_mice_impute.R
# lines 911
# Inspect the convergence of the algorithm
# mice() implements an iterative MCMC type of algorithm.
# Trace lines generated by the algorithm to study convergence:
# Plot convergence of imputed data, only plots the last 3 variables:
svg(sprintf('convergence_plots_imputation_%s.svg', output_name))
plot(imp_merged)
dev.off()
# TO DO: save legend
# The plot shows the mean (left) and standard deviation (right)
# of the imputed values only.
# In general, we would like the streams to intermingle
# and be free of any trends at the later iterations.
return(something_I_need)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.