knitr::opts_chunk$set(echo = TRUE, message = F, warning = F, fig.height = 6, comment = "", cache = T) options(knitr.duplicate.label = "allow") library(ggextend)
r flipbookr::chunk_reveal('a_geom_punto_1', title = '### a_geom_punto')
# without the function library(ggplot2) ggplot(data = cars) + aes(x = speed, y = dist) + geom_point()
r flipbookr::chunk_reveal('a_geom_punto_2', title = '### a_geom_punto')
# the function
a_geom_punto
a_geom_punto
r flipbookr::chunk_reveal('a_geom_punto_3', title = '### a_geom_punto')
# using the function ggplot(data = cars) + aes(x = speed, y = dist) + a_geom_punto()
r flipbookr::chunk_reveal('b_geom_point_blue_4', title = '### b_geom_point_blue')
# without the function library(ggplot2) ggplot(data = cars) + aes(x = speed, y = dist) + geom_point(color = "blue")
r flipbookr::chunk_reveal('b_geom_point_blue_5', title = '### b_geom_point_blue')
# the function
b_geom_point_blue
b_geom_point_blue
r flipbookr::chunk_reveal('b_geom_point_blue_6', title = '### b_geom_point_blue')
# using the function ggplot(data = cars) + aes(x = speed, y = dist) + b_geom_point_blue()
r flipbookr::chunk_reveal('b_geom_ring_7', title = '### b_geom_ring')
# without the function library(ggplot2) ggplot(data = cars) + aes(x = speed, y = dist) + geom_point(shape = 21, size = 3)
r flipbookr::chunk_reveal('b_geom_ring_8', title = '### b_geom_ring')
# the function
b_geom_ring
b_geom_ring
r flipbookr::chunk_reveal('b_geom_ring_9', title = '### b_geom_ring')
# using the function ggplot(data = cars) + aes(x = speed, y = dist) + b_geom_ring(size = 3) + b_geom_ring(aes(fill = speed > 9), color = "white", size = 8) # using the function ggplot(data = cars) + aes(x = speed, y = dist) + b_geom_ring(fill = "slateblue", color = "white", size = 8)
r flipbookr::chunk_reveal('c_geom_lm_10', title = '### c_geom_lm')
# without the function library(ggplot2) ggplot(data = cars) + aes(x = speed, y = dist) + geom_point() + geom_smooth(method = lm, se = FALSE)
r flipbookr::chunk_reveal('c_geom_lm_11', title = '### c_geom_lm')
# the function
c_geom_lm
r flipbookr::chunk_reveal('c_geom_lm_12', title = '### c_geom_lm')
# using the function ggplot(data = cars) + aes(x = speed, y = dist) + geom_point() + c_geom_lm()
r flipbookr::chunk_reveal('d_geom_segment_min_max_13', title = '### d_geom_segment_min_max')
# without the function library(magrittr) library(dplyr) cars %>% summarize( min_speed = min(speed), max_speed = max(speed), min_dist = min(dist), max_dist = max(dist) ) -> mins_maxs library(ggplot2) ggplot(data = cars) + aes(x = speed, y = dist) + geom_point() + geom_segment(data = mins_maxs, aes(x = min_speed, xend = max_speed, y = min_dist, yend = max_dist))
r flipbookr::chunk_reveal('d_geom_segment_min_max_14', title = '### d_geom_segment_min_max')
# using the function ggplot(data = cars) + aes(x = speed, y = dist) + geom_point() + d_geom_segment_mins_maxs()
r flipbookr::chunk_reveal('d_geom_segment_min_max_15', title = '### d_geom_segment_min_max')
# the proto "StatSegmentminmax" d_geom_segment_mins_maxs
r flipbookr::chunk_reveal('e_geom_lm_intercept_16', title = '### e_geom_lm_intercept')
# without the function library(magrittr) library(dplyr) cars %>% lm(dist ~ speed, data = .) -> cars_model tibble(y_val = cars_model$coefficients[1], x_val = 0) -> cars_model_intercept library(ggplot2) ggplot(data = cars) + aes(x = speed, y = dist) + geom_point() + geom_smooth(method = lm) + geom_point(data = cars_model_intercept, aes(x = x_val, y = y_val), color = "red", size = 3)
r flipbookr::chunk_reveal('e_geom_lm_intercept_17', title = '### e_geom_lm_intercept')
# using the function ggplot(data = cars) + aes(x = speed, y = dist) + geom_point() + geom_smooth(method = lm) + e_geom_lm_intercept(size = 4) + aes(color = speed > 12)
r flipbookr::chunk_reveal('e_geom_lm_intercept_18', title = '### e_geom_lm_intercept')
# the proto and function "StatOlsintercept" e_geom_lm_intercept
r flipbookr::chunk_reveal('f_geom_line_endpoint_19', title = '### f_geom_line_endpoint')
# without the function library(magrittr) library(dplyr) cars %>% mutate(speed_cat = speed > 8) %>% group_by(speed_cat) %>% filter(speed == max(speed)) -> cars_group_endpoint library(ggplot2) ggplot(data = cars) + aes(x = speed, y = dist) + aes(color = speed > 8) + geom_line() + geom_point(data = cars_group_endpoint) layer_data(last_plot(), 2)
r flipbookr::chunk_reveal('f_geom_line_endpoint_20', title = '### f_geom_line_endpoint')
# the function
f_geom_line_endpoint
r flipbookr::chunk_reveal('f_geom_line_endpoint_21', title = '### f_geom_line_endpoint')
# using the function ggplot(data = cars) + aes(x = speed, y = dist) + geom_line() + f_geom_line_endpoint(size = 4) + aes(color = speed > 9) layer_data(last_plot(), 2)
r flipbookr::chunk_reveal('f_geom_line_endpoint_22', title = '### f_geom_line_endpoint')
# the proto "StatEndpoint" f_geom_line_endpoint
r flipbookr::chunk_reveal('h_geom_prop_in_ts_26', title = '### h_geom_prop_in_ts')
# do it without function library(tidyverse) gapminder::gapminder %>% mutate(gdp = gdpPercap * pop) -> my_gapminder my_gapminder %>% group_by(year, continent) %>% summarise(gdp = sum(gdp)) %>% mutate(prop_gdp = gdp/sum(gdp)) %>% ggplot() + aes(x = year) + aes(y = continent) + geom_tile() + aes(fill = prop_gdp) + scale_fill_viridis_c()
r flipbookr::chunk_reveal('h_geom_prop_in_ts_27', title = '### h_geom_prop_in_ts')
# the function and proto "StatPropovertime" "StatPropovertimetext"
r flipbookr::chunk_reveal('h_geom_prop_in_ts_28', title = '### h_geom_prop_in_ts')
# use function library(ggplot2) library(magrittr) my_gapminder %>% ggplot() + aes(x = year) + aes(y = continent) + geom_tile_prop_over_time() + aes(fill = gdp) + scale_fill_viridis_c() library(ggplot2) library(magrittr) gapminder::gapminder %>% dplyr::mutate(gdp = gdpPercap * pop) %>% ggplot() + aes(x = year) + aes(y = continent) + geom_tile_prop_over_time() + aes(fill = gdp) + scale_fill_viridis_c() + aes(label = gdp) + geom_tile_prop_over_time_text() gapminder::gapminder %>% dplyr::mutate(gdp = gdpPercap * pop) %>% ggplot() + aes(x = year) + aes(y = continent) + geom_tile_prop_over_time() + aes(fill = gdp) + scale_fill_viridis_c() + aes(label = gdp) + geom_tile_prop_over_time_text() + facet_wrap(facets = vars(pop > 1000000)) gapminder::gapminder %>% ggplot() + aes(x = year) + aes(y = continent) + aes(fill = 1, label = 1) + # use 1 to count times continent is observed geom_tile_prop_over_time(color = "oldlace") + labs(fill = "proportionnof countriesnin each timenperiod") + geom_tile_prop_over_time_text(size = 3) + facet_wrap(facets = vars(ifelse(gdpPercap > 10000, "gdp per cap > 10000", "gdp per cap < 10000")), ncol = 1) + scale_fill_viridis_c()
r flipbookr::chunk_reveal('i_geom_prop_label_in_ts_29', title = '### i_geom_prop_label_in_ts')
library(ggplot2) library(magrittr) gapminder::gapminder %>% dplyr::mutate(gdp = gdpPercap * pop) %>% ggplot() + aes(x = year) + aes(y = continent) + geom_tile_prop_over_time() + aes(fill = gdp) + scale_fill_viridis_c() + aes(label = gdp) + geom_tile_prop_over_time_text() gapminder::gapminder %>% dplyr::mutate(gdp = gdpPercap * pop) %>% ggplot() + aes(x = year) + aes(y = continent) + geom_tile_prop_over_time() + aes(fill = gdp) + scale_fill_viridis_c() + aes(label = gdp) + geom_tile_prop_over_time_text(size = 2, angle = -90, color = "snow") + facet_wrap(facets = vars(pop > 1000000)) gapminder::gapminder %>% ggplot() + aes(x = year) + aes(y = continent) + aes(fill = 1, label = 1) + # use 1 to count times continent is observed geom_tile_prop_over_time(color = "oldlace") + labs(fill = "proportionnof countriesnin each timenperiod") + geom_tile_prop_over_time_text(size = 3) + facet_wrap(facets = vars(ifelse(gdpPercap > 10000, "gdp per cap > 10000", "gdp per cap < 10000")), ncol = 1) + scale_fill_viridis_c()
r flipbookr::chunk_reveal('j_geom_c_hull_30', title = '### j_geom_c_hull')
library(ggplot2) library(magrittr) chull(cars$speed, cars$dist) %>% # index of rim points cars[.,] -> cars_c_hull_rows ggplot(data = cars) + aes(x = speed) + aes(y = dist) + geom_point() + geom_polygon(data = cars_c_hull_rows, alpha = .5 ) ggplot(data = cars) + aes(x = speed) + aes(y = dist) + geom_point() + geom_c_hull(alpha = .5) + aes(color = speed >= 10)
r flipbookr::chunk_reveal('k_geom_c_hull_hollow_31', title = '### k_geom_c_hull_hollow')
library(ggplot2) library(magrittr) chull(cars$speed, cars$dist) %>% # index of rim points cars[.,] -> cars_c_hull_rows ggplot(data = cars) + aes(x = speed) + aes(y = dist) + geom_point() + geom_polygon(data = cars_c_hull_rows, alpha = .5 ) ggplot(data = cars) + aes(x = speed) + aes(y = dist) + geom_point() + k_geom_c_hull_hollow(alpha = .5) + aes(color = speed >= 10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.