# This is the recommended set up for flipbooks # you might think about setting cache to TRUE as you gain practice --- building flipbooks from scratch can be time consuming knitr::opts_chunk$set(fig.width = 6, message = FALSE, warning = FALSE, comment = "", cache = F) library(flipbookr) library(tidyverse)
library(tidyverse) nurses_raw <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-10-05/nurses.csv") nurses_raw %>% janitor::clean_names() -> nurses options(scipen = 10) nurses %>% filter(state != "Guam" & state!= "Virgin Islands") %>% ggplot() + aes(x = year) + aes(y = total_employed_rn) + aes(group = state) + geom_line(color = "magenta") + geom_point(size = 4, alpha = .7, shape = 21, fill = "magenta", color = "white") + scale_y_log10() + facet_wrap(facets = vars(state)) nurses %>% filter(state != "Guam" & state!= "Virgin Islands") %>% ggplot() + aes(x = year) + aes(y = hourly_wage_avg) + aes(group = state) + geom_line(color = "magenta") + geom_point(size = 4, alpha = .7, shape = 21, fill = "magenta", color = "white") + facet_wrap(facets = vars(state)) nurses %>% filter(state != "Guam" & state!= "Virgin Islands"& state != "Puerto Rico") %>% filter(year %in% range(year)) %>% select(state, year, hourly_wage_median) %>% pivot_wider(names_from = year, values_from = hourly_wage_median) %>% ggplot() + aes(x = `1998`, y = `2020`) + geom_abline(slope = 1, intercept = 0, linetype = "dashed") + coord_equal(ylim = c(0,60), xlim = c(0,40)) + labs(title = "Median hourly wage, 1998 and 2020", subtitle = "50 US States and District of Columbia") + geom_segment(aes(xend = `1998`, yend = 0), color = "grey") + geom_segment(aes(xend = `1998`, yend = `1998`), color = "grey35") + geom_point() + ggxmean::geom_lm() + labs(x = "Hourly wage in 1998, $US") + labs(y = "Hourly wage in 2020, $US") + ggrepel::geom_text_repel(aes(label = state %>% str_wrap(12), lineheight = .8 ), data = . %>% sample_frac(.2)) + scale_y_continuous(labels=scales::dollar_format()) + scale_x_continuous(labels=scales::dollar_format()) + theme_minimal() + ggstamp::stamp_arrow(x = 35, y = 35, xend = 35, yend = 60, size = .75) + ggstamp::stamp_text(x = 38, y = 50, char_width = 12, size = 4, label = "Gain median wage", angle = -90)
nurses %>% filter(state != "Guam" & state!= "Virgin Islands" & state!= "Puerto Rico") %>% filter(year %in% range(year)) %>% select(state, year, hourly_wage_median) %>% pivot_wider(names_from = year, values_from = hourly_wage_median) %>% arrange(`1998`) %>% mutate(state = fct_inorder(state)) %>% ggplot() + aes(x = `1998`, y = state) + geom_point(color = "plum3") + geom_segment(aes(xend = `2020`, yend = state), color = "plum3") + geom_point(aes(x = `2020`), color = "plum4")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.