rmoo_Selection: Selection operators in non-dominated genetic algorithms

rmoo_SelectionR Documentation

Selection operators in non-dominated genetic algorithms

Description

Functions implementing selection non-dominated genetic operator.

Usage

  rmoo_lrSelection(object, r, q)
  rmoo_tourSelection(object, k = 2, ...)

  rmoobin_lrSelection(object, r, q)
  rmoobin_tourSelection(object, k = 2, ...)

  rmooreal_lrSelection(object, r, q)
  rmooreal_tourSelection(object, k = 2, ...)

  rmooperm_lrSelection(object, r, q)
  rmooperm_tourSelection(object, k = 2, ...)

Arguments

object

An object of class "nsga", "nsga2" or "nsga3", usually resulting from a call to function nsga, nsga2 or nsga3.

r

A tuning parameter for the specific selection operator.

q

A tuning parameter for the specific selection operator.

k

A tuning parameter for the specific selection operator.

...

Further arguments passed to or from other methods.

Value

Return a list with two elements:

population

a matrix of dimension object@popSize times the number of decision variables containing the selected individuals or strings;

fitness

a vector of length object@popSize containing the fitness values for the selected individuals.

Author(s)

Francisco Benitez

References

Scrucca, L. (2017) On some extensions to 'GA' package: hybrid optimisation, parallelisation and islands evolution. The R Journal, 9/1, 187-206, doi: 10.32614/RJ-2017-008.

See Also

nsga(), nsga2() and nsga3()


Evolutionary-Optimization-Laboratory/rmoo documentation built on Oct. 28, 2024, 5:45 p.m.