knitr::opts_chunk$set(echo = TRUE) knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file()) options(warn=-1) knitr::opts_chunk$set(echo = TRUE) library(fpemlocal) devtools::load_all()
In this vignette we will fit FPET to multiple countries and aggregate the samples to obtain results for aggregate levels. We will fit models for Botswana and Lesotho, country codes 72 and 426 respectively.
First, fit the models with the function fit_fp_c
.
fit_botswana <- fit_fp_c( surveydata_filepath = "data-raw/manuscript_example_data/Botswana_72_married_example.csv", division_numeric_code = 72, is_in_union = "Y", first_year = 1970, last_year = 2030 ) fit_lesotho <- fit_fp_c( surveydata_filepath = "data-raw/manuscript_example_data/Lesotho_426_married_example.csv", division_numeric_code = 426, is_in_union = "Y", first_year = 1970, last_year = 2030 )
Read in population data for the populations of interest. Create a single dataset with the function rbind
.
popdata_botswana <- read.csv("data-raw/manuscript_example_data/Botswana_72_married_popdata_example.csv") popdata_lesotho <- read.csv("data-raw/manuscript_example_data/Lesotho_426_married_popdata_example.csv") popdata <- rbind(popdata_botswana, popdata_lesotho)
Supply the fits in a list and the population data to the function calc_fp_aggregate
. The resulting object is a list of long format tibbles with family planning estimates.
results <- calc_fp_aggregate(fits = list(fit_botswana, fit_lesotho), population_data = popdata) results %>% head()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.