In this vignette we obtain estimates for all women with package datasets. By default, functions utilize UNPD datasets.
library(fpemlocal)
fit_fp_c
fpet_calculate_indicaotrs
plot_fp_c
fit_fp_c
is a wrapper function to run the one-country implementation
of the family planning estimation model. Specify the division numeric
code, the union status of women (denote all women with “ALL”
), and the
time frame.
fitlist <- fit_fp_c(
is_in_union = "ALL",
division_numeric_code = 4,
first_year = 1970,
last_year = 2030
)
Obtaining results for all women entails running the in-union and
not-in-union model. In this case, fit_fp_c
returns a named list of
fits.
fitlist %>% names
## [1] "Y" "N" "ALL"
Calculate point estimates for family planning indicators with the
function calc_fp_c
.
calc_fp_c
utilizes pmap
from the tidyverse package purr allowing it
to act on any number of fits. We will supply the entire list of fits
from fit_fp_c
.
resultlist <- calc_fp_c(fitlist)
Like the previous function, calc_fp_c
returns a list. Since we
supplied three fits the function returns three sets of calculated family
planning indicators.
resultlist %>% names
## [1] "Y" "N" "ALL"
A set of results here consist of the following family planning indicators
resultlist$ALL %>% names
## [1] "contraceptive_use_any"
## [2] "contraceptive_use_modern"
## [3] "contraceptive_use_traditional"
## [4] "non_use"
## [5] "unmet_need_any"
## [6] "unmet_need_modern"
## [7] "demand"
## [8] "demand_modern"
## [9] "demand_satisfied"
## [10] "demand_satisfied_modern"
## [11] "no_need"
## [12] "contraceptive_use_any_population_counts"
## [13] "contraceptive_use_modern_population_counts"
## [14] "traditional_cpr_population_counts"
## [15] "non_use_population_counts"
## [16] "unmet_need_population_counts"
## [17] "unmet_need_modern_population_counts"
## [18] "demand_modern_population_counts"
## [19] "demand_population_counts"
## [20] "demand_satisfied_population_counts"
## [21] "demand_satisfied_modern_population_counts"
## [22] "no_need_population_counts"
The point estimates for each indicator are long-format tibbles. Let’s
take a look at the tibble for the indicator contraceptive_use_modern
resultlist$ALL$contraceptive_use_modern
## # A tibble: 488 x 3
## year percentile value
## <int> <chr> <dbl>
## 1 1970 mean 0.0116
## 2 1971 mean 0.0123
## 3 1972 mean 0.0130
## 4 1973 mean 0.0138
## 5 1974 mean 0.0147
## 6 1975 mean 0.0156
## 7 1976 mean 0.0167
## 8 1977 mean 0.0179
## 9 1978 mean 0.0191
## 10 1979 mean 0.0205
## # ... with 478 more rows
fpemlocal also includes a function named plot_fp_c
to plot the
calculated point estimates against the survey data. The arguments to
this function are, the fit object from step 1, the results from step 2,
and a vector of indicator names. The vector of indicator names
corresponds to the names which appear in the results from step 2. This
function also handles lists.
plot_fp_c(
fitlist,
resultlist,
indicators = c(
"unmet_need_any",
"contraceptive_use_modern",
"contraceptive_use_traditional",
"contraceptive_use_any"
)
)
## $Y
## $Y$unmet_need_any
##
## $Y$contraceptive_use_modern
##
## $Y$contraceptive_use_traditional
##
## $Y$contraceptive_use_any
##
##
## $N
## $N$unmet_need_any
##
## $N$contraceptive_use_modern
##
## $N$contraceptive_use_traditional
##
## $N$contraceptive_use_any
##
##
## $ALL
## $ALL$unmet_need_any
##
## $ALL$contraceptive_use_modern
##
## $ALL$contraceptive_use_traditional
##
## $ALL$contraceptive_use_any
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.