Estimating subnational family planning indicators for married women with custom user data ================
library(fpemlocal)
fit_fp_c
calc_fp_c
plot_fp_c
fit <- fit_fp_c(
surveydata_filepath = "data-raw/manuscript_example_data/afghanistan_4_married_example.csv",
division_numeric_code = 4,
is_in_union = "Y",
first_year = 1970,
last_year = 2030,
subnational = TRUE
)
##
## -- Column specification --------------------------------------------------------
## cols(
## .default = col_double(),
## is_in_union = col_character(),
## age_range = col_character(),
## data_series_type = col_character(),
## group_type_relative_to_baseline = col_character(),
## unmet_need_modern = col_logical(),
## is_pertaining_to_methods_used_since_last_pregnancy = col_character(),
## pertaining_to_methods_used_since_last_pregnancy_reason = col_logical(),
## has_geographical_region_bias = col_character(),
## geographical_region_bias_reason = col_character(),
## has_non_pregnant_and_other_positive_biases = col_character(),
## non_pregnant_and_other_positive_biases_reason = col_logical(),
## age_group_bias = col_character(),
## modern_method_bias = col_character(),
## has_traditional_method_bias = col_character(),
## traditional_method_bias_reason = col_logical(),
## has_absence_of_probing_questions_bias = col_character(),
## record_id = col_character()
## )
## i Use `spec()` for the full column specifications.
population_data <- read.csv("data-raw/manuscript_example_data/afghanistan_4_married_popdata_example.csv")
results <- calc_fp_c(fit = fit,
population_data = population_data)
plot_fp_c(
fit,
results,
indicators = c(
"unmet_need_any",
"contraceptive_use_modern",
"contraceptive_use_traditional",
"contraceptive_use_any"
)
)
## $Y
## $Y$unmet_need_any
##
## $Y$contraceptive_use_modern
##
## $Y$contraceptive_use_traditional
##
## $Y$contraceptive_use_any
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.