In 2008, the Bush administration sent out stimulus checks as tax rebates (Economic Stimulus Act of 2008). The checks are a function of income, marital status, and the number of children. We have functions that computable taxable income given income, tax liability given income, and also stimulus amount given income.
First, we test the taxable income function.
ar_income <- c(1e4, 2e4, 4e4, 8e4, 1.6e5) ls_taxable <- ffp_snw_tax_liability(ar_income) mn_taxable_income <- ls_taxable$mn_taxable_income mn_tax_liability <- ls_taxable$mn_tax_liability
Second, show the taxable income schedule.
print('mn_taxable_income') print(mn_taxable_income)
Third, show the tax liability schedule.
print('mn_tax_liability') print(mn_tax_liability)
Find taxable income, tax liability, and then finally stimulus checks (tax-rebates) amounts for households with 10k, 20k, 30k, 40k, 50k, 60k, 70k, 80k, 90k, 100k, and 160k income, and all kids and marital status combinations.
# Income array ar_income <- c(1e4, 2e4, 3e4, 4e4, 5e4, 6e4, 7e4, 8e4, 9e4, 1.6e5) # Store stimulus checks amounts mn_stimulus_check <- array(NA, dim=c(length(ar_income), 2, 5)) # Solve and Store stimulus by kids count and marital status for (it_kids in 0:4){ for (bl_marital in c(0,1)){ # Solve and Store ar_stimulus_check <- ffp_snw_stimulus_checks_bush(ar_income, it_kids, bl_marital) mn_stimulus_check[, bl_marital+1, it_kids+1] <- ar_stimulus_check } } # Labeling dimnames(mn_stimulus_check)[[1]] = paste0('income=', round(ar_income, 0)) dimnames(mn_stimulus_check)[[2]] = paste0('married=', 0:1) dimnames(mn_stimulus_check)[[3]] = paste0('kids=', 0:4) # Print print('mn_stimulus_check') print(mn_stimulus_check)
We have a dataframe of households, where each household is defined by the number of kids in the household, marital status, and also income bin. Note that this is an income bin, not a specific income level. We computes an approximate income-bin (and marital status and kids count) specific stimulus amount by evaluating the stimulus checks function along a fine grid of income levels from the min to the max point of the income-bin, and simply take the average.
We do this first for the actual stimulus that households should receive under the Economic Stimulus Act of 2008. We then adjust parameters for the stimulus function and compute alternative max-stimulus bounds for each income bin.
We develop the function by testing out the code line by line first.
First, load in the testing dataframe df_nsw_tiny_chk168_df_id.
# Load file data(df_nsw_tiny_chk168_df_id) df_id <- df_nsw_tiny_chk168_df_id # Print results print(df_id)
Second, parse the ymin_group group.
# what 1 in model equals to fl_multiple <- 58056 # Define input variables svr_ymin_group <- 'ymin_group' # Parse the ymin group df_id <- df_id %>% rowwise() %>% mutate(!!sym(svr_ymin_group) := as.character(!!sym(svr_ymin_group))) %>% mutate(y_group_min = substring(strsplit(!!sym(svr_ymin_group), ",")[[1]][1], 2), y_group_max = gsub(strsplit(!!sym(svr_ymin_group), ",")[[1]][2], pattern = "]", replacement = "")) %>% mutate(y_group_min = fl_multiple*as.numeric(y_group_min), y_group_max = fl_multiple*as.numeric(y_group_max)) %>% ungroup() # Print results print(df_id[1:10,])
Third, generate an income array with y_group_min and y_group_max, and call the stimulus function to solve for stimulus along the income array, and then take average. Set various parameters
# Dollar per Check fl_percheck_dollar <- 100 # Define input variables svr_id <- 'id_i' svr_marital <- 'marital' svr_kids <- 'kids' # Define other parameters fl_stimulus_child <- 300 fl_stimulus_adult_min <- 300 fl_stimulus_adult_max <- 600 fl_per_adult_phase_out <- 75000 fl_phase_out_per_dollar_income <- 0.05 # fl_stimulus_child <- ls_stimulus_specs$fl_stimulus_child # fl_stimulus_adult_min <- ls_stimulus_specs$fl_stimulus_adult_min # fl_stimulus_adult_max <- ls_stimulus_specs$fl_stimulus_adult_max # fl_per_adult_phase_out <- ls_stimulus_specs$fl_per_adult_phase_out # fl_phase_out_per_dollar_income <- ls_stimulus_specs$fl_phase_out_per_dollar_income # Compute stimulus, averaging over array of income-specific stimulus df_id <- df_id %>% group_by(!!sym(svr_id)) %>% do(bush_rebate = mean(ffp_snw_stimulus_checks_bush( ar_income = seq(.[['y_group_min']], .[['y_group_max']], length.out=100), it_kids = .[[svr_kids]], bl_marital = .[[svr_marital]], fl_stimulus_child=fl_stimulus_child, fl_stimulus_adult_min=fl_stimulus_adult_min, fl_stimulus_adult_max=fl_stimulus_adult_max, fl_per_adult_phase_out=fl_per_adult_phase_out, fl_phase_out_per_dollar_income=fl_phase_out_per_dollar_income ))) %>% unnest(c(bush_rebate)) %>% mutate(bush_rebate_n_checks = round(bush_rebate/fl_percheck_dollar)) %>% left_join(df_id, by=svr_id) # Display results print(df_id)
Now we test the function ffp_snw_stimulus_checks_bush_add2dfid().
First, we add in the actual policy bounds:
# Call and solve df_id <- df_nsw_tiny_chk168_df_id df_id_checkadded_actual <- ffp_snw_stimulus_checks_bush_add2dfid( df_id, it_income_n_in_seg = 100, fl_multiple = 58056, fl_percheck_dollar = 100, fl_stimulus_child=300, fl_stimulus_adult_min=300, fl_stimulus_adult_max=600, fl_per_adult_phase_out=75000, fl_phase_out_per_dollar_income=0.05) # Display print(df_id_checkadded_actual[1:10,]) # Summarize vars.group <- c('kids', 'marital') var.numeric <- 'bush_rebate' str.stats.group <- 'allperc' ar.perc <- c(0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.70, 0.90) ls_summ_by_group <- ff_summ_bygroup(df_id_checkadded_actual, vars.group, var.numeric, str.stats.group, ar.perc) df_table_grp_stats <- ls_summ_by_group$df_table_grp_stats print(round(df_table_grp_stats,0) %>% select(vars.group, one_of( 'mean', '1%', '5%', '10%', '20%', '30%', '50%', '90%')))
Second, we will triple the amount of stimulus received for adult and for kids, but keep the base amount the same, and set phase-out per_dollar income to 0. By doing this, we are no longer finding the stimulus under the actual policy, but generating upper allocation bounds based on tax-liability.
# Child stimulus triple fl_stimulus_child=300*3 fl_stimulus_adult_max=600*3 fl_phase_out_per_dollar_income=0 # Call and solve df_id <- df_nsw_tiny_chk168_df_id df_id_checkadded_x3chd_x3adthgbd <- ffp_snw_stimulus_checks_bush_add2dfid( df_id, fl_multiple = 58056, fl_percheck_dollar = 100, fl_stimulus_child=fl_stimulus_child, fl_stimulus_adult_min=300, fl_stimulus_adult_max=fl_stimulus_adult_max, fl_phase_out_per_dollar_income=fl_phase_out_per_dollar_income) # Display print(df_id_checkadded_x3chd_x3adthgbd[1:10,]) # Summarize ls_summ_by_group <- ff_summ_bygroup(df_id_checkadded_x3chd_x3adthgbd, vars.group, var.numeric, str.stats.group, ar.perc) df_table_grp_stats <- ls_summ_by_group$df_table_grp_stats print(round(df_table_grp_stats,0) %>% select(vars.group, one_of( 'mean', '1%', '5%', '10%', '20%', '30%', '50%', '90%')))
Third, we will triple the amount of stimulus received for adult and for kids, and also triple the base amount (upper-bound) for lowest income group, and set phase-out per_dollar income to 0.
# Child stimulus triple fl_stimulus_child=300*3 fl_stimulus_adult_max=600*3 fl_stimulus_adult_min=300*3 fl_phase_out_per_dollar_income=0 # Call and solve df_id <- df_nsw_tiny_chk168_df_id df_id_checkadded_x3chd_x3adthgbdlwbd <- ffp_snw_stimulus_checks_bush_add2dfid( df_id, fl_multiple = 58056, fl_percheck_dollar = 100, fl_stimulus_child=fl_stimulus_child, fl_stimulus_adult_min=fl_stimulus_adult_min, fl_stimulus_adult_max=fl_stimulus_adult_max, fl_phase_out_per_dollar_income=fl_phase_out_per_dollar_income) # Display print(df_id_checkadded_x3chd_x3adthgbdlwbd[1:10,]) # Summarize ls_summ_by_group <- ff_summ_bygroup(df_id_checkadded_x3chd_x3adthgbdlwbd, vars.group, var.numeric, str.stats.group, ar.perc) df_table_grp_stats <- ls_summ_by_group$df_table_grp_stats print(round(df_table_grp_stats,0) %>% select(vars.group, one_of( 'mean', '1%', '5%', '10%', '20%', '30%', '50%', '90%')))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.