# check how many different units are being reported for
# each of the analytes
library(readxl)
library(tidyverse)
oct_31_2008 <- read_excel("../raw-data/qapp/08_10_31.xls")
x <- read_excel("../raw-data/qapp/11_10_13.xls")
qapp_book <- list.files("../raw-data/qapp/",
pattern = "^[0-9]",
full.names = TRUE)
raw_data <- map(qapp_book, ~read_excel(path = .))
units_in_all_datasets <- raw_data %>%
imap_dfr(function(x, y) {
x %>%
distinct(ANALYTE, UNITS) %>%
mutate(source = y)
})
# What are all the method codes used?
all_files <- list.files("data-raw/qapp/", pattern = ".xl", full.names = TRUE)
all_codes <- all_files %>%
map_df(function(f) {
read_excel(f) %>%
distinct(METHODNAME)
}) %>%
distinct(METHODNAME)
analytes_multiple_units <- units_in_all_datasets %>%
group_by(ANALYTE) %>%
summarise(
total_units_reported = n_distinct(UNITS)
) %>%
filter(total_units_reported > 1) %>%
pull(ANALYTE)
# ML just needs to be placed in the correct part of the string
units_in_all_datasets %>%
filter(ANALYTE %in% analytes_multiple_units[1])
units_in_all_datasets %>%
filter(ANALYTE %in% analytes_multiple_units[2])
units_in_all_datasets %>%
filter(ANALYTE %in% analytes_multiple_units[3])
# EXISTING DATA
prelim_data <- read_xlsx("data-raw/existing-preliminary-data.xlsx")
# what are all the analytes that are reported
prelim_data %>%
distinct(Characteristic)
# what are all the sites that are reported?
prelim_data %>%
distinct(`Monitoring Location ID`)
# what are the date ranges
prelim_data %>%
group_by(`Monitoring Location ID`) %>%
summarise(
start_date = min(`Activity Start Date`),
end_date = max(`Activity Start Date`)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.