knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
library(cpp)
library(dplyr)
library(parallel)

#we want to see how the sequential cross validation works on the Gradient Descent Optimization Method for Linear Models 
#varying the number of groups created (in the case of 1000 folds and 100 folds)
cpp::cvparallel(1000,Dep.var~.,mydataset,1e-5,1000,1e-5,F, detectCores()-1)
cpp::cvparallel(100,Dep.var~.,mydataset,1e-5,1000,1e-5,F, detectCores()-1)

#we want to see how the sequential cross validation works on the Gradient Descent Optimization Method for Linear Models 
#varying the stopping criteria (in the case of tolerance level of 1e-3 and 1e-6)
cpp::cvparallel(100,Dep.var~.,mydataset,1e-3,1000,1e-3,F, detectCores()-1)
cpp::cvparallel(100,Dep.var~.,mydataset,1e-6,1000,1e-6,F, detectCores()-1)


FrancescoBarile/FJLPackage documentation built on Dec. 17, 2021, 8:29 p.m.