knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(cpp) library(dplyr) library(parallel) #we want to see how the sequential cross validation works on the Gradient Descent Optimization Method for Linear Models #varying the number of groups created (in the case of 1000 folds and 100 folds) cpp::cvparallel(1000,Dep.var~.,mydataset,1e-5,1000,1e-5,F, detectCores()-1) cpp::cvparallel(100,Dep.var~.,mydataset,1e-5,1000,1e-5,F, detectCores()-1) #we want to see how the sequential cross validation works on the Gradient Descent Optimization Method for Linear Models #varying the stopping criteria (in the case of tolerance level of 1e-3 and 1e-6) cpp::cvparallel(100,Dep.var~.,mydataset,1e-3,1000,1e-3,F, detectCores()-1) cpp::cvparallel(100,Dep.var~.,mydataset,1e-6,1000,1e-6,F, detectCores()-1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.