backdr_exp_np: Compute Standardized Averages Using Exposure Modeling, Non...

View source: R/backdr_exp_np.R

backdr_exp_npR Documentation

Compute Standardized Averages Using Exposure Modeling, Non Parametric

Description

Compute standardized averages using exposure modeling, non-parametric.

Usage

backdr_exp_np(data, formula, exposure.name, confound.names, att = FALSE)

mk.mortdat(data, formula, exposure.name, confound.names, att = FALSE)

attsem.r(data, formula, exposure.name, confound.names, att = FALSE)

Arguments

data

Dataframe of raw data.

formula

Formula representing the model.

exposure.name

Name of exposure variable.

confound.names

Names of the confound variables.

att

if FALSE calculate the standardized (unconfounded) causal effect. If TRUE calculate the average effect of treatment on the treated.

Details

Compute standardized averages using exposure modeling. See introduction of section 6.2 and section 6.2.1.

Value

Dataframe in a useable format for rsample::bootstraps.

Source

Section 6.2.1

Examples

# An example can be found in the location identified in the
# source section above at the github site
# https://github.com/FrankLef/FundamentalsCausalInference.

FrankLef/fciR documentation built on Nov. 12, 2023, 6:09 a.m.