Description Usage Arguments Details Value Author(s) References See Also Examples
Conversion formula: Detrended Fluctuation Analysis (DFA) estimate of the Hurst exponent (a self-affinity parameter sa
) to an informed estimate of the (fractal) dimension (FD).
1 2 | ## S3 method for class 'dfa'
sa2fd(sa)
|
sa |
Self-Afinity parameter estimate based on DFA slope (e.g., |
The DFA slope (H) will be converted to a dimension estimate using:
D_{DFA} <e2><89><88> 2-(tanh(log(3)*sa))
An informed estimate of the Fractal Dimension, see Hasselman(2013) for details.
Fred Hasselman
Hasselman, F. (2013). When the blind curve is finite: dimension estimation and model inference based on empirical waveforms. Frontiers in Physiology, 4, 75. http://doi.org/10.3389/fphys.2013.00075
Other SA to FD converters: sa2fd.psd
,
sa2fd.sda
1 2 3 4 5 6 7 8 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.