The goal of R.COVID.19 is to simply aquire data for the disease COVID 19 from sources that make the data readily available. No promises are made to the validaty of the data as their are many people at the sources working on that. Because these functions link to the sources, the data should update as the sources update. If data is not being generated, please open an issue so that I can look into the broken link. The sources for the data is listed below.
Finally, the John Hopkins data was transposed to be tidy, instead of having dates as columns in a wide dataset. The New York Times data was already in a tidy format. See GitPage site for information of other functions and sources of data.
GitPage Site: https://fredo-xvii.github.io/R.COVID.19/
You can install the released version of R.COVID.19 from CRAN with: (NOT ON CRAN)
install.packages("R.COVID.19")
And the development version from GitHub with:
install.packages("devtools")
devtools::install_github("Fredo-XVII/R.COVID.19")
Load libraries:
library(R.COVID.19)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(magrittr)
Global COVID-19 Data:
confirmed <- R.COVID.19::global_confirmed_daily()
#> Parsed with column specification:
#> cols(
#> .default = col_double(),
#> `Province/State` = col_character(),
#> `Country/Region` = col_character()
#> )
#> See spec(...) for full column specifications.
deaths <- R.COVID.19::global_deaths_daily()
#> Parsed with column specification:
#> cols(
#> .default = col_double(),
#> `Province/State` = col_character(),
#> `Country/Region` = col_character()
#> )
#> See spec(...) for full column specifications.
recovered <- R.COVID.19::global_recovered_daily()
#> Parsed with column specification:
#> cols(
#> .default = col_double(),
#> `Province/State` = col_character(),
#> `Country/Region` = col_character()
#> )
#> See spec(...) for full column specifications.
combo <- confirmed %>%
dplyr::left_join(deaths) %>%
dplyr::left_join(recovered) %>%
dplyr::mutate(mortality_rate = round((.$deaths_cases / .$confirmed_cases)*100,2))
#> Joining, by = c("Province/State", "Country/Region", "Lat", "Long", "greg_d")
#> Joining, by = c("Province/State", "Country/Region", "Lat", "Long", "greg_d")
knitr::kable(combo %>% dplyr::filter(`Country/Region` == "US") %>% tail(10), format = "html") %>%
kableExtra::kable_styling(bootstrap_options = c("striped"))
Province/State
Country/Region
Lat
Long
greg\_d
confirmed\_cases
deaths\_cases
recovered\_cases
mortality\_rate
NA
US
40
\-100
2/24/21
28309085
506335
0
1.79
NA
US
40
\-100
2/25/21
28386492
508673
0
1.79
NA
US
40
\-100
2/26/21
28463190
510764
0
1.79
NA
US
40
\-100
2/27/21
28527344
512252
0
1.80
NA
US
40
\-100
2/28/21
28578548
513291
0
1.80
NA
US
40
\-100
3/1/21
28637313
514810
0
1.80
NA
US
40
\-100
3/2/21
28694071
516737
0
1.80
NA
US
40
\-100
3/3/21
28759980
519205
0
1.81
NA
US
40
\-100
3/4/21
28827755
521119
0
1.81
NA
US
40
\-100
3/5/21
28894541
522877
0
1.81
US COVID-19 Data with Geographic Data:
us_confirmed <- R.COVID.19::us_geo_confirmed_daily()
#> Parsed with column specification:
#> cols(
#> .default = col_double(),
#> iso2 = col_character(),
#> iso3 = col_character(),
#> Admin2 = col_character(),
#> Province_State = col_character(),
#> Country_Region = col_character(),
#> Combined_Key = col_character()
#> )
#> See spec(...) for full column specifications.
us_deaths <- R.COVID.19::us_geo_deaths_daily()
#> Parsed with column specification:
#> cols(
#> .default = col_double(),
#> iso2 = col_character(),
#> iso3 = col_character(),
#> Admin2 = col_character(),
#> Province_State = col_character(),
#> Country_Region = col_character(),
#> Combined_Key = col_character()
#> )
#> See spec(...) for full column specifications.
combo <- us_confirmed %>% dplyr::left_join(us_deaths) %>%
dplyr::mutate(mortality_rate = round((.$deaths_cases / .$confirmed_cases)*100,2))
#> Joining, by = c("UID", "iso2", "iso3", "code3", "FIPS", "Admin2", "Province_State", "Country_Region", "Lat", "Long_", "Combined_Key", "greg_d")
knitr::kable(combo %>%
dplyr::filter(Province_State == "New York", Admin2 == "New York") %>%
tail(5), format = "html") %>%
kableExtra::kable_styling(bootstrap_options = c("striped"))
UID
iso2
iso3
code3
FIPS
Admin2
Province\_State
Country\_Region
Lat
Long\_
Combined\_Key
greg\_d
confirmed\_cases
Population
deaths\_cases
mortality\_rate
84036061
US
USA
840
36061
New York
New York
US
40.76727
\-73.97153
New York, New York, US
3/1/21
103922
1628706
3906
3.76
84036061
US
USA
840
36061
New York
New York
US
40.76727
\-73.97153
New York, New York, US
3/2/21
104444
1628706
3917
3.75
84036061
US
USA
840
36061
New York
New York
US
40.76727
\-73.97153
New York, New York, US
3/3/21
104874
1628706
3940
3.76
84036061
US
USA
840
36061
New York
New York
US
40.76727
\-73.97153
New York, New York, US
3/4/21
105491
1628706
3954
3.75
84036061
US
USA
840
36061
New York
New York
US
40.76727
\-73.97153
New York, New York, US
3/5/21
106144
1628706
3964
3.73
US COVID-19 County Data with Geographic Data:
us_co_cases <- R.COVID.19::us_counties_daily() %>%
dplyr::mutate(mortality_rate = round((.$deaths / .$cases)*100,2))
#> Parsed with column specification:
#> cols(
#> date = col_date(format = ""),
#> county = col_character(),
#> state = col_character(),
#> fips = col_character(),
#> cases = col_double(),
#> deaths = col_double()
#> )
knitr::kable(us_co_cases %>% dplyr::filter(state == "New York") %>% tail(10), format = "html") %>%
kableExtra::kable_styling(bootstrap_options = "striped")
date
county
state
fips
cases
deaths
mortality\_rate
2021-02-24
Yates
New York
36123
1011
26
2.57
2021-02-25
Yates
New York
36123
1011
26
2.57
2021-02-26
Yates
New York
36123
1011
26
2.57
2021-02-27
Yates
New York
36123
1014
26
2.56
2021-02-28
Yates
New York
36123
1014
26
2.56
2021-03-01
Yates
New York
36123
1014
26
2.56
2021-03-02
Yates
New York
36123
1015
26
2.56
2021-03-03
Yates
New York
36123
1015
26
2.56
2021-03-04
Yates
New York
36123
1017
26
2.56
2021-03-05
Yates
New York
36123
1022
26
2.54
US COVID-19 State Data with Geographic Data:
us_st_cases <- R.COVID.19::us_states_daily() %>%
dplyr::mutate(mortality_rate = round((.$deaths / .$cases)*100,2))
#> Parsed with column specification:
#> cols(
#> date = col_date(format = ""),
#> state = col_character(),
#> fips = col_character(),
#> cases = col_double(),
#> deaths = col_double()
#> )
knitr::kable(us_st_cases %>% dplyr::filter(state == "New York") %>% tail(10), format = "html") %>%
kableExtra::kable_styling(bootstrap_options = "striped")
date
state
fips
cases
deaths
mortality\_rate
2021-02-24
New York
36
1611288
46680
2.90
2021-02-25
New York
36
1620181
46790
2.89
2021-02-26
New York
36
1628255
46914
2.88
2021-02-27
New York
36
1636297
47025
2.87
2021-02-28
New York
36
1644124
47143
2.87
2021-03-01
New York
36
1650560
47247
2.86
2021-03-02
New York
36
1656941
47345
2.86
2021-03-03
New York
36
1663505
47464
2.85
2021-03-04
New York
36
1670973
47565
2.85
2021-03-05
New York
36
1679124
47672
2.84
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.