plotly_app_alltraces: Creates plotly for mobilisation of root reinforcement by all...

Description Usage Arguments Value Examples

View source: R/plotly_app_alltraces.R

Description

This function generates a plotly bar plot showing how root reinforcement mobilises according to the FBM, FBMw, FBMc and FBMcw models, all in a single graph

Usage

1
plotly_app_alltraces(dFBMc, cru_wwmc, dFBM, dFBMw, nsignif = 3)

Arguments

dFBMc

dataframe with fields for the normalised reference strain ('eps0rel'), the normalised reinforcement according to the FBMc model ('kk_fbmc') and the normalised reinforcement according to the FBMcw model ('kk_fbmcw').

cru_wwmc

peak root-reinforcement according to the WWMc model (numeric scalar)

dFBM

dataframe with FBM model predictions. Contains fields for the (normalised) reference strain 'epsr0rel' and the corresponding reinforcement 'cr_fbm'

dFBMw

dataframe with FBMw model predictions. Contains fields for the (normalised) reference strain 'epsr0rel' and the corresponding reinforcement 'cr_fbmw'

nsignif

number of significant digits in plotly hover labels (integer scalar)

Value

plotly object

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
dFBMc <- data.frame(   #FBMc and FBMcw predictions
  epsr0rel = seq(0, 1, l = 51),
  kk_fbmc = seq(0, 1, l = 51)^2,
  kk_fbmcw = seq(0, 1, l = 51)^0.5
)
cru_wwmc <- 30      #WWMc prediction
dFBM <- data.frame(   #FBM predictions
  epsr0rel = seq(0, 1, l = 6),
  cr_fbm = 20 * seq(0, 1, l = 6)^2
)
dFBMw <- data.frame(   #FBMw predictions
  epsr0rel = seq(0, 1, l = 6),
  cr_fbmw = 15 * seq(0, 1, l = 6)^0.6
)
plotly_app_alltraces(dFBMc, cru_wwmc, dFBM, dFBMw, nsignif = 2)

GJMeijer/FBMcw documentation built on Dec. 17, 2021, 9:23 p.m.