ggplot_mohrcircle: ggplot to plot Mohr circle of rotated stress element

View source: R/mohr_circles.R

ggplot_mohrcircleR Documentation

ggplot to plot Mohr circle of rotated stress element

Description

Function plots a Mohr circle for a rotated stress element and indicates the pole and the rotation angles

Usage

ggplot_mohrcircle(
  sigz = 40,
  sigx = 20,
  tau = 10,
  theta = 0,
  rotation_label = "theta",
  face_label = c("X", "Z"),
  palette = "Set1",
  pole = TRUE,
  pole_label = "Pole",
  n_circle = 181,
  color_circle = "black",
  color_lines = "grey50",
  double_angle = FALSE,
  effective_stress = FALSE,
  clockwise_shear = FALSE,
  xlim = c(0, NA),
  ylim = c(NA, NA)
)

Arguments

sigz

normal stress on z-plane (scalar)

sigx

normal stress on x-plane (scalar)

tau

shear stress

theta

rotation, in radians (scalar)

rotation_label

label to use for rotation

face_label

labels for x- and z-faces

palette

RColorBrewer color palette to use

pole

plot the pole point, label and lines if 'pole = TRUE'. If 'pole = FALSE', do not plot anything related to the pole

pole_label

label to plot at pole

n_circle

number of points to use for drawing Mohr circle

color_circle

color of the Mohr circle

color_lines

color of lines crossing midpoint of circle

double_angle

if 'TRUE', an indicator for twice the applied rotation in is plotted in the Mohr circle. If 'FALSE', this is omitted

effective_stress

if 'TRUE', effective stress label is plotted on the x-axis. if 'FALSE', total stress

clockwise_shear

if 'TRUE', shear stresses are positive on positive faces of the element and when pointing in the positive direction. When 'FALSE', the default structural mechanics notation (right-hand rule for moments) is used instead, resulting in positive shear stresses pointing in the opposite direction. Function calculations assume ('clockwise_shear = TRUE')

xlim, ylim

user defined min and max x and y axis limits. If not defined, the are automatically chosen

Value

ggplot object

Examples

ggplot_mohrcircle(sigz = 40, sigx = 20, tau = 5, theta = pi/8)

GJMeijer/soilmech documentation built on May 22, 2022, 10:39 a.m.