#' PMLi: Support Functions and Dataset for Analysis of Partially Matched Samples
#'
#' Functions and dataset to support AMS 597 Project, Spring 2021, on statistical
#' analysis strategies for partially matched samples (1st edition, 2021)
#'
#' @author Kai Li \email{kai.li@stonybrook.edu}
#'
#' @section PMLi Functions: The \code{PMLi} functions are the statistical
#' approaches that can be used to analyze partially matched samples.
#'
#' \code{\link{weighted.z}} Liptak's Weighted Z-Test
#'
#' \code{\link{modified.t}} Kim et al.'s Modified t-Statistic
#'
#' \code{\link{corrected.z}} Looney and Jones's Corrected Z-Test
#'
#' \code{\link{mle.hetero}} Lin and Stivers's MLE-Based Test under
#' Heteroscedasticity
#'
#' \code{\link{mle.homo}} Ekbohm's MLE-Based Test under Homoscedasticity
#'
#' @section PMLi Dataset: The \code{PMLi} sample dataset is partially matched
#' samples.
#'
#' \code{\link{pm}} Sample Dataset
#'
#' @details For a complete list of functions and further details, use
#' \code{library(help = "PMLi")}.
#'
#' @references Kuan P F, Huang B. A simple and robust method for partially
#' matched samples using the p-values pooling approach. \emph{Statistics in
#' medicine}. 2013; 32(19): 3247-3259.
#'
#' @docType package
#' @name PMLi
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.