perturbCorr: Perturb networks and evaluate subgroup structures of...

Description Usage Arguments Examples

Description

This function implements the Masuda, Kojaku & Sano (2018) "Configuration model for correlation matrices preserving the node strength" algorithm for generating correlation matrices that have the same strength distribution as the original matrix. Returns modularity of each randomized correlation matrix.

Usage

1
2
perturbCorr(sym.matrix, plot = TRUE, sampleSize = NULL, n = NULL,
  tol = 0.001, stepSize = 0.001, verbose = FALSE)

Arguments

sym.matrix

A symmetric, correlation or covariance matrix object

plot

Logical, defaults to TRUE

sampleSize

The sample size for a correlation matrix, lower values for more sampling error

n

Number of random correlations matrices to return

tol

Tolerance for configuration model convergence. Default to .0001

stepSize

Step size for configuration model NR solver. Increase to increase convergence speed. Default to .001

verbose

Logical, Print convergence information to screen. Defaults to FALSE.

Examples

1
perturbCorr(examplecorr, sampleSize=100, n=25, plot=FALSE)

GatesLab/evalClust documentation built on Nov. 17, 2019, 3:59 a.m.