head(trees)
lm(Girth ~ Height, data = trees)
# modelio formulės: Y ~ X1 + X2, data = duomenys # lm(formula, data = ___) lm_modelis <- lm(Girth ~ Height + Volume, data = trees) # Rezultatai print(lm_modelis) # Modelio tinkamumo duomenims diagnostika summary(lm_modelis) broom::glance(lm_modelis) broom::augment(lm_modelis) broom::tidy(lm_modelis) biostat::coef_standardized(lm_modelis) sigr::wrapFTest(lm_modelis) predict(lm_modelis) trees$prediction <- predict(lm_modelis) # lm(formula, data = ___) # lm_modelis <- lm(formula, data = dframe) # print(lm_modelis) # broom::glance(lm_modelis) # broom::augment(lm_modelis) # broom::tidy(lm_modelis) # biostat::coef_standardized(lm_modelis) # sigr::wrapFTest(lm_modelis) # predict(lm_modelis) # dframe$pred <- predict(lm_modelis) # # ggplot(dframe, aes(x = pred, y = outcome)) + # geom_point() + # geom_abline(color = "blue") # # predict(model, newdata) # WVPlots::GainCurvePlot(frame, xvar, truthvar, title) WVPlots::GainCurvePlot() # In the plot: A relative gini coefficient close to one shows that the model correctly sorts high unemployment situations from lower ones. # RMSE # galima interpretuoti: tipinė prognozės klaida. # sd(Y) # Y mūsų modeliuojamo kintamojo reikšmė # # sd - tipinis skirtumas tar konkrečios ir vidutinės kainos. # Jei RMSE < sd(Y), tai mūsų modelis geriau nuspėja kainas nei # modelis, kuris spėtų, kad kaina = vidutinė kaina. # # R^2 - galioja tik mokymo duomenim
# Cross-validation only evaluates modeling process, not future prediction. # Remember, cross-validation validates the modeling process, not an actual model. library(vtreat) splitPlan <- kWayCrossValidation(nRows, nSplits, NULL, NULL)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.