View source: R/grandStandardizedSolution.R
grand_standardized_solution | R Documentation |
Grand standardized solution of a two-stage path analysis model.
grand_standardized_solution(
object,
model_list = NULL,
se = TRUE,
acov_par = NULL,
free_list = NULL,
level = 0.95
)
grandStandardizedSolution(
object,
model_list = NULL,
se = TRUE,
acov_par = NULL,
free_list = NULL,
level = 0.95
)
object |
An object of class lavaan. |
model_list |
A list of string variable describing the structural path
model, in |
se |
A Boolean variable. If TRUE, standard errors for the grand standardized parameters will be computed. |
acov_par |
An asymptotic variance-covariance matrix for a fitted model object. |
free_list |
A list of model matrices that indicate the position of the free parameters in the parameter vector. |
level |
The confidence level required. |
A matrix of the standardized model parameters and standard errors.
library(lavaan)
## A single-group, two-factor example
mod1 <- '
# latent variables
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
# regressions
dem60 ~ ind60
'
fit1 <- sem(model = mod1,
data = PoliticalDemocracy)
grand_standardized_solution(fit1)
## A single-group, three-factor example
mod2 <- '
# latent variables
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8
# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
'
fit2 <- sem(model = mod2,
data = PoliticalDemocracy)
grand_standardized_solution(fit2)
## A multigroup, two-factor example
mod3 <- '
# latent variable definitions
visual =~ x1 + x2 + x3
speed =~ x7 + x8 + x9
# regressions
visual ~ c(b1, b1) * speed
'
fit3 <- sem(mod3, data = HolzingerSwineford1939,
group = "school",
group.equal = c("loadings", "intercepts"))
grand_standardized_solution(fit3)
## A multigroup, three-factor example
mod4 <- '
# latent variable definitions
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
# regressions
visual ~ c(b1, b1) * textual + c(b2, b2) * speed
'
fit4 <- sem(mod4, data = HolzingerSwineford1939,
group = "school",
group.equal = c("loadings", "intercepts"))
grand_standardized_solution(fit4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.