Man pages for GenomeNet/deepG
Deep Learning for Genome Sequence Data

auc_wrapperMean AUC score
balanced_acc_wrapperBalanced accuracy metric
compile_modelCompile model
conf_matrix_cbConfusion matrix callback.
create_dummy_dataWrite random sequences to fasta file
create_model_genomenetCreate GenomeNet Model with Given Architecture Parameters
create_model_lstm_cnnCreate LSTM/CNN network
create_model_lstm_cnn_multi_inputCreate LSTM/CNN network that can process multiple samples for...
create_model_lstm_cnn_target_middleCreate LSTM/CNN network to predict middle part of a sequence
create_model_lstm_cnn_time_distCreate LSTM/CNN network for combining multiple sequences
create_model_transformerCreate transformer model
create_model_twin_networkCreate twin network
crispr_sampleCRISPR data
dataset_from_genCollect samples from generator and store in rds or pickle...
deepG-packagedeepG for GenomeNet
early_stopping_time_cbStop training callback
ecoli_smallEcoli subset
evaluate_linearEvaluate matrices of true targets and predictions from layer...
evaluate_modelEvaluates a trained model on fasta, fastq or rds files
evaluate_sigmoidEvaluate matrices of true targets and predictions from layer...
evaluate_softmaxEvaluate matrices of true targets and predictions from layer...
exp_decayExponential Decay
f1_wrapperF1 metric
focal_loss_multiclassFocal loss for two or more labels
generator_dummyRandom data generator
generator_fasta_label_folderData generator for fasta/fasta files
generator_fasta_label_folder_wrapperGenerator wrapper
generator_fasta_label_header_csvData generator for fasta/fastq files and label targets
generator_fasta_lmLanguage model generator for fasta/fastq files
generator_initializeInitializes generators defined by...
generator_randomRandomly select samples from fasta files
generator_rdsRds data generator
get_class_weightEstimate frequency of different classes
get_generatorWrapper for generator functions
get_output_activationsGet activation functions of output layers
get_start_indComputes start position of samples
heatmaps_integrated_gradHeatmap of integrated gradient scores
integrated_gradientsCompute integrated gradients
int_to_n_gramEncode sequence of integers to sequence of n-gram
layer_aggregate_time_dist_wrapperAggregation layer
layer_pos_embedding_wrapperLayer for positional embedding
layer_pos_sinusoid_wrapperLayer for positional encoding
layer_transformer_block_wrapperTransformer block
load_cpLoad checkpoint
load_predictionRead states from h5 file
loss_clContrastive loss
merge_modelsMerge two models
model_card_cbCreate model card
n_gram_distGet distribution of n-grams
n_gram_of_matrixOne-hot encoding matrix to n-gram encoding matrix
noisy_loss_wrapperLoss function for label noise
one_hot_to_seqChar sequence corresponding to one-hot matrix.
parenthesisParenthesis data
pipePipe operator
plot_cmPlot confusion matrix
plot_rocPlot ROC
predict_modelMake prediction for nucleotide sequence or entries in...
predict_with_n_gramPredict the next nucleotide using n-gram
remove_add_layersRemove layers from model and add dense layers
remove_checkpointsRemove checkpoints
reset_states_cbReset states callback
reshape_inputReplace input layer
reshape_tensorReshape tensors for set learning
resume_training_from_model_cardContinue training from model card
seq_encoding_labelEncodes integer sequence for label classification.
seq_encoding_lmEncodes integer sequence for language model
sgdrStochastic Gradient Descent with Warm Restarts
split_fastaSplit fasta file into smaller files.
stepdecayStep Decay
summarize_statesCreate summary of predictions
train_modelTrain neural network on genomic data
train_model_cpcTrain CPC inspired model
validation_after_training_cbValidation after training callback
GenomeNet/deepG documentation built on Dec. 24, 2024, 12:11 p.m.