auc_wrapper | Mean AUC score |
balanced_acc_wrapper | Balanced accuracy metric |
compile_model | Compile model |
conf_matrix_cb | Confusion matrix callback. |
create_dummy_data | Write random sequences to fasta file |
create_model_genomenet | Create GenomeNet Model with Given Architecture Parameters |
create_model_lstm_cnn | Create LSTM/CNN network |
create_model_lstm_cnn_multi_input | Create LSTM/CNN network that can process multiple samples for... |
create_model_lstm_cnn_target_middle | Create LSTM/CNN network to predict middle part of a sequence |
create_model_lstm_cnn_time_dist | Create LSTM/CNN network for combining multiple sequences |
create_model_transformer | Create transformer model |
create_model_twin_network | Create twin network |
crispr_sample | CRISPR data |
dataset_from_gen | Collect samples from generator and store in rds or pickle... |
deepG-package | deepG for GenomeNet |
early_stopping_time_cb | Stop training callback |
ecoli_small | Ecoli subset |
evaluate_linear | Evaluate matrices of true targets and predictions from layer... |
evaluate_model | Evaluates a trained model on fasta, fastq or rds files |
evaluate_sigmoid | Evaluate matrices of true targets and predictions from layer... |
evaluate_softmax | Evaluate matrices of true targets and predictions from layer... |
exp_decay | Exponential Decay |
f1_wrapper | F1 metric |
focal_loss_multiclass | Focal loss for two or more labels |
generator_dummy | Random data generator |
generator_fasta_label_folder | Data generator for fasta/fasta files |
generator_fasta_label_folder_wrapper | Generator wrapper |
generator_fasta_label_header_csv | Data generator for fasta/fastq files and label targets |
generator_fasta_lm | Language model generator for fasta/fastq files |
generator_initialize | Initializes generators defined by... |
generator_random | Randomly select samples from fasta files |
generator_rds | Rds data generator |
get_class_weight | Estimate frequency of different classes |
get_generator | Wrapper for generator functions |
get_output_activations | Get activation functions of output layers |
get_start_ind | Computes start position of samples |
heatmaps_integrated_grad | Heatmap of integrated gradient scores |
integrated_gradients | Compute integrated gradients |
int_to_n_gram | Encode sequence of integers to sequence of n-gram |
layer_aggregate_time_dist_wrapper | Aggregation layer |
layer_pos_embedding_wrapper | Layer for positional embedding |
layer_pos_sinusoid_wrapper | Layer for positional encoding |
layer_transformer_block_wrapper | Transformer block |
load_cp | Load checkpoint |
load_prediction | Read states from h5 file |
loss_cl | Contrastive loss |
merge_models | Merge two models |
model_card_cb | Create model card |
n_gram_dist | Get distribution of n-grams |
n_gram_of_matrix | One-hot encoding matrix to n-gram encoding matrix |
noisy_loss_wrapper | Loss function for label noise |
one_hot_to_seq | Char sequence corresponding to one-hot matrix. |
parenthesis | Parenthesis data |
pipe | Pipe operator |
plot_cm | Plot confusion matrix |
plot_roc | Plot ROC |
predict_model | Make prediction for nucleotide sequence or entries in... |
predict_with_n_gram | Predict the next nucleotide using n-gram |
remove_add_layers | Remove layers from model and add dense layers |
remove_checkpoints | Remove checkpoints |
reset_states_cb | Reset states callback |
reshape_input | Replace input layer |
reshape_tensor | Reshape tensors for set learning |
resume_training_from_model_card | Continue training from model card |
seq_encoding_label | Encodes integer sequence for label classification. |
seq_encoding_lm | Encodes integer sequence for language model |
sgdr | Stochastic Gradient Descent with Warm Restarts |
split_fasta | Split fasta file into smaller files. |
stepdecay | Step Decay |
summarize_states | Create summary of predictions |
train_model | Train neural network on genomic data |
train_model_cpc | Train CPC inspired model |
validation_after_training_cb | Validation after training callback |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.