evaluate_softmax | R Documentation |
Compute confusion matrix, accuracy, categorical crossentropy and (optionally) AUC or AUPRC, given predictions and true targets. AUC and AUPRC only possible for 2 targets.
evaluate_softmax(y, y_conf, auc = FALSE, auprc = FALSE, label_names = NULL)
y |
Matrix of true target. |
y_conf |
Matrix of predictions. |
auc |
Whether to include AUC metric. Only possible for 2 targets. |
auprc |
Whether to include AUPRC metric. Only possible for 2 targets. |
label_names |
Names of corresponding labels. Length must be equal to number of columns of |
A list of evaluation results.
y <- matrix(c(1, 0, 0, 0, 1, 1), ncol = 2)
y_conf <- matrix(c(0.3, 0.5, 0.1, 0.7, 0.5, 0.9), ncol = 2)
evaluate_softmax(y, y_conf, auc = TRUE, auprc = TRUE, label_names = c("A", "B"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.