| local_multiquantilelisa | R Documentation | 
The function to apply multivariate quantile LISA statistics
local_multiquantilelisa(
  w,
  df,
  k,
  q,
  permutations = 999,
  permutation_method = "complete",
  significance_cutoff = 0.05,
  cpu_threads = 6,
  seed = 123456789
)
w | 
 An instance of Weight object  | 
df | 
 A data frame with selected variables only. E.g. guerry[c("TopCrm", "TopWealth", "TopLit")]  | 
k | 
 A vector of "k" values indicate the number of quantiles for each variable. Value range e.g. [1, 10]  | 
q | 
 A vector of "q" values indicate which quantile or interval for each variable used in local join count statistics. Value stars from 1.  | 
permutations | 
 (optional) The number of permutations for the LISA computation  | 
permutation_method | 
 (optional) The permutation method used for the LISA computation. Options are ('complete', 'lookup'). Default is 'complete'.  | 
significance_cutoff | 
 (optional) A cutoff value for significance p-values to filter not-significant clusters  | 
cpu_threads | 
 (optional) The number of cpu threads used for parallel LISA computation  | 
seed | 
 (optional) The seed for random number generator  | 
An instance of LISA-class
library(sf)
guerry_path <- system.file("extdata", "Guerry.shp", package = "rgeoda")
guerry <- st_read(guerry_path)
queen_w <- queen_weights(guerry)
lisa <- local_multiquantilelisa(queen_w, guerry[c("Crm_prp", "Litercy")],
k=c(4,4), q=c(1,1))
clsts <- lisa_clusters(lisa)
clsts
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.