Description Usage Arguments Details Value Author(s) References Examples
ConsensusClusterPlus function for determing cluster number and class membership by stability evidence. calcICL function for calculating cluster-consensus and item-consensus.
1 2 3 4 5 6 | ConsensusClusterPlus(
d=NULL, maxK = 3, reps=10, pItem=0.8, pFeature=1, clusterAlg="hc",title="untitled_consensus_cluster",
innerLinkage="average", finalLinkage="average", distance="pearson", ml=NULL,
tmyPal=NULL,seed=NULL,plot=NULL,writeTable=FALSE,weightsItem=NULL,weightsFeature=NULL,verbose=F,corUse="everything")
calcICL(res,title="untitled_consensus_cluster",plot=NULL,writeTable=FALSE)
|
d |
data to be clustered; either a data matrix where columns=items/samples and rows are features. For example, a gene expression matrix of genes in rows and microarrays in columns, or ExpressionSet object, or a distance object (only for cases of no feature resampling) |
maxK |
integer value. maximum cluster number to evaluate. |
reps |
integer value. number of subsamples. |
pItem |
numerical value. proportion of items to sample. |
pFeature |
numerical value. proportion of features to sample. |
clusterAlg |
character value. cluster algorithm. 'hc' heirarchical (hclust), 'pam' for paritioning around medoids, 'km' for k-means upon data matrix, 'kmdist' for k-means upon distance matrices (former km option), or a function that returns a clustering. See example and vignette for more details. |
title |
character value for output directory. Directory is created only if plot is not NULL or writeTable is TRUE. This title can be an abosulte or relative path. |
innerLinkage |
heirarchical linkage method for subsampling. |
finalLinkage |
heirarchical linkage method for consensus matrix. |
distance |
character value. 'pearson': (1 - Pearson correlation), 'spearman' (1 - Spearman correlation), 'euclidean', 'binary', 'maximum', 'canberra', 'minkowski" or custom distance function. |
ml |
optional. prior result, if supplied then only do graphics and tables. |
tmyPal |
optional character vector of colors for consensus matrix |
seed |
optional numerical value. sets random seed for reproducible results. |
plot |
character value. NULL - print to screen, 'pdf', 'png', 'pngBMP' for bitmap png, helpful for large datasets. |
writeTable |
logical value. TRUE - write ouput and log to csv. |
weightsItem |
optional numerical vector. weights to be used for sampling items. |
weightsFeature |
optional numerical vector. weights to be used for sampling features. |
res |
result of consensusClusterPlus. |
verbose |
boolean. If TRUE, print messages to the screen to indicate progress. This is useful for large datasets. |
corUse |
optional character value. specifies how to handle missing data in correlation distances 'everything','pairwise.complete.obs', 'complete.obs' see cor() for description. |
ConsensusClusterPlus implements the Consensus Clustering algorithm of Monti, et al (2003) and extends this method with new functionality and visualizations. Its utility is to provide quantitative stability evidence for determing a cluster count and cluster membership in an unsupervised analysis.
ConsensusClusterPlus takes a numerical data matrix of items as columns and rows as features. This function subsamples this matrix according to pItem, pFeature, weightsItem, and weightsFeature, and clusters the data into 2 to maxK clusters by clusterArg clusteringAlgorithm. Agglomerative heirarchical (hclust) and kmeans clustering are supported by an option see above. For users wishing to use a different clustering algorithm for which many are available in R, one can supply their own clustering algorithm as a simple programming hook - see the second commented-out example that uses divisive heirarchical clustering.
For a detailed description of usage, output and images, see the vignette by: openVignette().
ConsensusClusterPlus returns a list of length maxK. Each element is a list containing consensusMatrix (numerical matrix), consensusTree (hclust), consensusClass (consensus class asssignments). ConsensusClusterPlus also produces images.
calcICL returns a list of two elements clusterConsensus and itemConsensus corresponding to cluster-consensus and item-consensus. See Monti, et al (2003) for formulas.
Matt Wilkerson mdwilkerson@outlook.com Peter Waltman waltman@soe.ucsc.edu
Please cite the ConsensusClusterPlus publication, below, if you use ConsensusClusterPlus in a publication or presentation: Wilkerson, M.D., Hayes, D.N. (2010). ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010 Jun 15;26(12):1572-3.
Original description of the Consensus Clustering method: Monti, S., Tamayo, P., Mesirov, J., Golub, T. (2003) Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Machine Learning, 52, 91-118.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | # obtain gene expression data
library(Biobase)
data(geneData)
d=geneData
#median center genes
dc = sweep(d,1, apply(d,1,median))
# run consensus cluster, with standard options
rcc = ConsensusClusterPlus(dc,maxK=4,reps=100,pItem=0.8,pFeature=1,title="example",distance="pearson",clusterAlg="hc")
# same as above but with pre-computed distance matrix, useful for large datasets (>1,000's of items)
dt = as.dist(1-cor(dc,method="pearson"))
rcc2 = ConsensusClusterPlus(dt,maxK=4,reps=100,pItem=0.8,pFeature=1,title="example2",distance="pearson",clusterAlg="hc")
# k-means clustering
rcc3 = ConsensusClusterPlus(d,maxK=4,reps=100,pItem=0.8,pFeature=1,title="example3",distance="euclidean",clusterAlg="km")
### partition around medoids clustering with manhattan distance
rcc4 = ConsensusClusterPlus(d,maxK=4,reps=100,pItem=0.8,pFeature=1,title="example3",distance="manhattan",clusterAlg="pam")
## example of custom distance function as hook:
myDistFunc = function(x){ dist(x,method="manhattan")}
rcc5 = ConsensusClusterPlus(d,maxK=4,reps=100,pItem=0.8,pFeature=1,title="example3",distance="myDistFunc",clusterAlg="pam")
##example of clusterAlg as hook:
#library(cluster)
#dianaHook = function(this_dist,k){
# tmp = diana(this_dist,diss=TRUE)
# assignment = cutree(tmp,k)
# return(assignment)
#}
#rcc6 = ConsensusClusterPlus(d,maxK=6,reps=25,pItem=0.8,pFeature=1,title="example",clusterAlg="dianaHook")
## ICL
resICL = calcICL(rcc,title="example")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.