#' GenSVM: A Generalized Multiclass Support Vector Machine
#'
#' The GenSVM classifier is a generalized multiclass support vector machine
#' (SVM). This classifier aims to find decision boundaries that separate the
#' classes with as wide a margin as possible. In GenSVM, the loss functions
#' that measures how misclassifications are counted is very flexible. This
#' allows the user to tune the classifier to the dataset at hand and
#' potentially obtain higher classification accuracy. Moreover, this
#' flexibility means that GenSVM has a number of alternative multiclass SVMs as
#' special cases. One of the other advantages of GenSVM is that it is trained
#' in the primal space, allowing the use of warm starts during optimization.
#' This means that for common tasks such as cross validation or repeated model
#' fitting, GenSVM can be trained very quickly.
#'
#' This package provides functions for training the GenSVM model either as a
#' separate model or through a cross-validated parameter grid search. In both
#' cases the GenSVM C library is used for speed. Auxiliary functions for
#' evaluating and using the model are also provided.
#'
#' @section GenSVM functions:
#' The main GenSVM functions are:
#' \describe{
#' \item{\code{\link{gensvm}}}{Fit a GenSVM model for specific model
#' parameters.}
#' \item{\code{\link{gensvm.grid}}}{Run a cross-validated grid search for
#' GenSVM.}
#' }
#'
#' For the GenSVM and GenSVMGrid models the following two functions are
#' available. When applied to a GenSVMGrid object, the function is applied to
#' the best GenSVM model.
#' \describe{
#' \item{\code{\link{plot}}}{Plot the low-dimensional \emph{simplex} space
#' where the decision boundaries are fixed (for problems with 3 classes).}
#' \item{\code{\link{predict}}}{Predict the class labels of new data using the
#' GenSVM model.}
#' }
#'
#' Moreover, for the GenSVM and GenSVMGrid models a \code{coef} function is
#' defined:
#' \describe{
#' \item{\code{\link{coef.gensvm}}}{Get the coefficients of the fitted GenSVM
#' model.}
#' \item{\code{\link{coef.gensvm.grid}}}{Get the parameter grid of the GenSVM
#' grid search.}
#' }
#'
#' The following utility functions are also included:
#' \describe{
#' \item{\code{\link{gensvm.accuracy}}}{Compute the accuracy score between true
#' and predicted class labels}
#' \item{\code{\link{gensvm.maxabs.scale}}}{Scale each column of the dataset by
#' its maximum absolute value, preserving sparsity and mapping the data to [-1,
#' 1]}
#' \item{\code{\link{gensvm.train.test.split}}}{Split a dataset into a training
#' and testing sample}
#' \item{\code{\link{gensvm.refit}}}{Refit a fitted GenSVM model with slightly
#' different parameters or on a different dataset}
#' }
#'
#' @section Kernels in GenSVM:
#'
#' GenSVM can be used for both linear and nonlinear multiclass support vector
#' machine classification. In general, linear classification will be faster but
#' depending on the dataset higher classification performance can be achieved
#' using a nonlinear kernel.
#'
#' The following nonlinear kernels are implemented in the GenSVM package:
#' \describe{
#' \item{RBF}{The Radial Basis Function kernel is a well-known kernel function
#' based on the Euclidean distance between objects. It is defined as
#' \deqn{
#' k(x_i, x_j) = exp( -\gamma || x_i - x_j ||^2 )
#' }
#' }
#' \item{Polynomial}{A polynomial kernel can also be used in GenSVM. This
#' kernel function is implemented very generally and therefore takes three
#' parameters (\code{coef}, \code{gamma}, and \code{degree}). It is defined
#' as:
#' \deqn{
#' k(x_i, x_j) = ( \gamma x_i' x_j + coef)^{degree}
#' }
#' }
#' \item{Sigmoid}{The sigmoid kernel is the final kernel implemented in
#' GenSVM. This kernel has two parameters and is implemented as follows:
#' \deqn{
#' k(x_i, x_j) = \tanh( \gamma x_i' x_j + coef)
#' }
#' }
#' }
#'
#' @author
#' Gerrit J.J. van den Burg, Patrick J.F. Groenen \cr
#' Maintainer: Gerrit J.J. van den Burg <gertjanvandenburg@gmail.com>
#'
#' @references
#' Van den Burg, G.J.J. and Groenen, P.J.F. (2016). \emph{GenSVM: A Generalized
#' Multiclass Support Vector Machine}, Journal of Machine Learning Research,
#' 17(225):1--42. URL \url{https://jmlr.org/papers/v17/14-526.html}.
#'
#' @seealso
#' \code{\link{gensvm}}, \code{\link{gensvm.grid}}
#'
#' @aliases
#' gensvm.package
#'
#' @name gensvm-package
#' @docType package
NULL
#>NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.