The below workflow recapitualtes part of SPOTlights validation workflow, but uses floodlight deconvolution instead.
#Import data library(TabulaMurisSenisData) sce <- TabulaMurisSenisDroplet(tissues = "Kidney")$Kidney # Keep cells from 18m mice sce <- sce[, sce$age == "18m"] # Keep cells with clear cell type annotations sce <- sce[, !sce$free_annotation %in% c("nan", "CD45")] data<-sce@assays@data@listData[["counts"]] cell_types<-sce$free_annotation
#Generate average expression profile cluster_centers<-average_expression(data, cell_types) #generate Spots spots_final2<- generate_spots(data, cell_types) #deconvolute spots decon_answer5<-deconvolute_using_NNLS(cluster_centers, spots_final2[["spots"]]) #Get your answer key decon_answer_key5<-spots_final2[["cell_types"]] #calculate mean squared error mean(colSums(decon_answer_key5- decon_answer5)^2) #get residual of known vs predicted residual<- (decon_answer_key5-decon_answer5) #get correlation matrix correlation<-cor(decon_answer_key5, decon_answer5) plotCorrelationMatrix(correlation) #Plot correlation matrix heatmap(correlation)
heatmap(t(residual))
ggplot()+geom_point(aes(x=vec8, y=vec7))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.