SemiDMFMC | R Documentation |
[S]emi-parametirc [D]ynamic [M]ulti-[F]actor [M]ulti-[C]umulant estimation
SemiDMFMC( X, ff, Z = NULL, SemiFL = F, sel.bw = "uni", con_residual = T, best_model = NULL, Penalty = c("NONE", "LASSO", "MCP", "SCAD"), factor.control = list(var.model = "sGARCH", var.targeting = F, var.distribution = "sged", Corr.Struture = c("ica", "dcc", "copula"), dcc.model = "DCC", copula.model = list(copula = "mvt", method = "ML", time.varying = FALSE, transformation = "spd"), tgc.type = "leverage", tgc.targeting = F, mean.model = list(armaOrder = c(1, 1)), CTGC = FALSE, rep_sim_f = 10), eps.control = list(var.model = "sGARCH", var.targeting = F, var.distribution = "sged", tgc.type = "leverage", tgc.targeting = F, mean.model = list(armaOrder = c(0, 0)), rep_sim_e = 10), ... )
X |
A matrix or data frame with t rows (samples) and n columns (variables). |
ff |
The factors drive the data X. |
Z |
The variable drive factor loadings. |
SemiFL |
Logical. If |
sel.bw |
Bandwith selection method. |
con_residual |
Logical, whether the moments of the residuals are time-varying or not. |
best_model |
A vector. It gives which factor loadings are semi-parametric. |
Penalty |
Only used for multi-factor model. Penalty regression to estimate factor loadings. |
factor.control |
The parameters of factors' moments estimation. |
eps.control |
The parameters of errors' moments estimation. |
... |
Any other passthru parameters. |
Estimated covariance, co-skewness, co-exkurtosis, co-kurtosis and the results of regression.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.