number_of_clusters: Title LASSO

Description Usage Arguments Value Examples

Description

Title LASSO

Usage

1
2
3
number_of_clusters(x, method = "Euclidean", K.max = 10, B = 100,
  verbose = FALSE, plot.num.clus = TRUE, scale = TRUE, diss = FALSE,
  cluster.only = TRUE)

Arguments

x

Data matrix

method

character string indicating how the “optimal” number of clusters: Euclidean (default), Manhattan, heirarchical euclidean or heirarchcal manhattan

K.max

the maximum number of clusters to consider, must be at least two. Default value is 10.

B

integer, number of Monte Carlo (“bootstrap”) samples. Default value is 100.

verbose

integer or logical, determining if “progress” output should be printed. The default prints one bit per bootstrap sample. Default value is FALSE.

plot.num.clus

if TRUE (default) the gap statistic plot will be printed

scale

if TRUE (default) the data matrix will be scaled.

diss

if TRUE (default as FALSE) x will be considered as a dissimilarity matrix.

cluster.only

if true (default as FALSE) only the clustering will be computed and returned, see details.

y

Dependent variable

x

Data matrix

Value

plot and table which advises how many clusters should be

plot and table which advises how many clusters should be

Examples

1
2
3
4
# LASSO_selection(x, y)
Title Deciding on Number of Clusters

# number_of_clusters(subx, B=50, method='Euclidean')

HBPMedical/CCC documentation built on May 28, 2019, 12:40 p.m.