HaoranLi/ARHT: Adaptable Regularized Hotelling's T^2 Test for High-Dimensional Data

Perform the Adaptable Regularized Hotelling's T^2 test (ARHT) proposed by Li et al., (2016) <arXiv:1609.08725>. Both one-sample and two-sample mean test are available with various probabilistic alternative prior models. It contains a function to consistently estimate higher order moments of the population covariance spectral distribution using the spectral of the sample covariance matrix (Bai et al. (2010) <doi:10.1111/j.1467-842X.2010.00590.x>). In addition, it contains a function to sample from 3-variate chi-squared random vectors approximately with a given correlation matrix when the degrees of freedom are large.

Getting started

Package details

Maintainer
LicenseGPL (>= 2)
Version0.1.0
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
install.packages("devtools")
library(devtools)
install_github("HaoranLi/ARHT")
HaoranLi/ARHT documentation built on April 11, 2018, 1:22 a.m.