View source: R/multivariate_nonparametric_L2.R
local.refine.multi.nonpar.L2.epan | R Documentation |
Perform local refinement for multivariate nonparametric change points localisation based on L2 distance.
local.refine.multi.nonpar.L2.epan(
cpt_init,
Y,
kappa_hat,
r = 2,
w = 0.9,
c_kappa = 10
)
cpt_init |
An |
Y |
A |
kappa_hat |
A |
r |
An |
w |
A |
c_kappa |
A |
A vector of locally refined change points estimation.
Haotian Xu
n = 150
v = c(floor(n/3), 2*floor(n/3)) # location of change points
r = 2
p = 6
Y = matrix(0, p, n) # matrix for data
mu0 = rep(0, p) # mean of the data
mu1 = rep(0, p)
mu1[1:floor(p/2)] = 2
Sigma0 = diag(p) #Covariance matrices of the data
Sigma1 = diag(p)
# Generate data
for(t in 1:n){
if(t <= v[1] || t > v[2]){
Y[,t] = MASS::mvrnorm(n = 1, mu0, Sigma0)
}
if(t > v[1] && t <= v[2]){
Y[,t] = MASS::mvrnorm(n = 1, mu1, Sigma1)
}
}## close for generate data
M = 100
intervals = WBS.intervals(M = M, lower = 1, upper = ncol(Y)) #Random intervals
h = 2*(1/n)^{1/(2*r+p)} # bandwith
temp = WBS.multi.nonpar.L2(Y, 1, ncol(Y), intervals$Alpha, intervals$Beta, h, delta = 15)
cpt_init = tuneBSmultinonpar(temp, Y)
kappa_hat = kappa.multi.nonpar.L2(cpt_init, Y, h_kappa = 0.01)
local.refine.multi.nonpar.L2(cpt_init, Y, kappa_hat, r = 2, w = 0.9, c_kappa = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.