#' implements three way metric multidimensional scaling:
#' DISTATIS and COVSTATIS.
#'
#' \code{DistatisR}: package implements three way
#' metric multidimensional scaling:
#' DISTATIS and COVSTATIS.
#'
#' Analyzes sets of distance (or covariance)
#' matrices collected on the same set
#' of observations and find common and specific metric spaces.
#'
#' \tabular{ll}{ Package: \tab DistatisR\cr
#' Type: \tab Package\cr Version: \tab
#' 1.1.0\cr Date: \tab 2022-09-28\cr
#' License: \tab GPL-2\cr Depends: \tab
#' prettyGraphs (>= 2.0.0), car}
#' The example shown here comes from Abdi
#' \emph{et al.} (2007), \code{distatis}
#' paper on the sorting task.
#'
#' @name DistatisR-package
#' @aliases DistatisR-package DistatisR DiSTATISR
#' @docType package
#' @author Derek Beaton [aut, com, ctb], & Herve Abdi
#' [aut, cre]
#'
#' Maintainer: Herve Abdi <herve@@utdallas.edu>
#' @seealso % Optional links to other man pages, e.g. % \code{\link{}}
#' \code{\link{distatis}} \code{\link{BootFactorScores}}
#' \code{\link{BootFromCompromise}} \code{\link{DistanceFromSort}}
#' \code{\link{distatis}} \code{\link{GraphDistatisAll}}
#' \code{\link{GraphDistatisBoot}} \code{\link{GraphDistatisCompromise}}
#' \code{\link{GraphDistatisPartial}} \code{\link{GraphDistatisRv}}
#' \code{\link{mmds}}
#' \code{\link{prettyGraphs}}
#' @references % Note: these papers are available from
#' \url{https://personal.utdallas.edu/~herve/}
#'
#' Abdi, H., Valentin, D., O'Toole, A.J., & Edelman, B. (2005).
#' DISTATIS: The
#' analysis of multiple distance matrices.
#' \emph{Proceedings of the IEEE
#' Computer Society: International Conference
#' on Computer Vision and Pattern
#' Recognition.} (San Diego, CA, USA). pp. 42-47.
#'
#' Abdi, H., Valentin, D., Chollet, S., & Chrea, C. (2007).
#' Analyzing
#' assessors and products in sorting tasks:
#' DISTATIS, theory and applications.
#' \emph{Food Quality and Preference}, \bold{18}, 627--640.
#'
#' Abdi, H., & Valentin, D., (2007).
#' Some new and easy ways to describe,
#' compare, and evaluate products and assessors.
#' In D., Valentin, D.Z. Nguyen,
#' L. Pelletier (Eds):
#' \emph{New trends in sensory evaluation of food and
#' non-food products}.
#' Ho Chi Minh (Vietnam): Vietnam National University & Ho
#' Chi Minh City Publishing House. pp. 5--18.
#'
#' Abdi, H., Dunlop, J.P., & Williams, L.J. (2009).
#' How to compute reliability
#' estimates and display confidence and tolerance
#' intervals for pattern
#' classiffers using the Bootstrap
#' and 3-way multidimensional scaling
#' (DISTATIS). \emph{NeuroImage}, \bold{45}, 89--95.
#'
#' Abdi, H., Williams, L.J., Valentin, D., & Bennani-Dosse, M.
#' (2012). STATIS
#' and DISTATIS: Optimum multi-table principal component
#' analysis and three way
#' metric multidimensional scaling.
#' \emph{Wiley Interdisciplinary Reviews:
#' Computational Statistics}, \bold{4}, 124--167.
#'
#' Chollet, S., Valentin, D., & Abdi, H. (2014).
#' The free sorting
#' task. In. P.V. Tomasco & G. Ares (Eds),
#' \emph{Novel Techniques in Sensory
#' Characterization and Consumer Profiling.}
#' Boca Raton: Taylor and Francis.
#'
#' Valentin, D., Chollet, S., Nestrud, M., & Abdi, H. (2018).
#' Sorting and similarity methodologies.
#' In. S. Kemp, S., J. Hort, & T.
#' Hollowood (Eds.),
#' \emph{Descriptive Analysis in Sensory Evaluation}.
#' London: Wiley-Blackwell.
#' @keywords package
#' @examples
#'
#' # Here we use the sorting task from Abdi et al.' (2007) paper.
#' # where 10 Assessors sorted 8 beers.
#'
#' #-----------------------------------------------------------------------------
#' # 1. Get the data from the 2007 sorting example
#' # this is the way they look from Table 1 of
#' # Abdi et al. (2007).
#' # Assessors
#' # 1 2 3 4 5 6 7 8 9 10
#' # Beer Sex f m f f m m m m f m
#' # -----------------------------
#' #Affligen 1 4 3 4 1 1 2 2 1 3
#' #Budweiser 4 5 2 5 2 3 1 1 4 3
#' #Buckler_Blonde 3 1 2 3 2 4 3 1 1 2
#' #Killian 4 2 3 3 1 1 1 2 1 4
#' #St. Landelin 1 5 3 5 2 1 1 2 1 3
#' #Buckler_Highland 2 3 1 1 3 5 4 4 3 1
#' #Fruit Defendu 1 4 3 4 1 1 2 2 2 4
#' #EKU28 5 2 4 2 4 2 5 3 4 5
#'
#'
#' # 1.1. Create the
#' # Name of the Beers
#' BeerName <- c('Affligen', 'Budweiser','Buckler Blonde',
#' 'Killian','St.Landelin','Buckler Highland',
#' 'Fruit Defendu','EKU28')
#' # 1.2. Create the name of the Assessors
#' # (F are females, M are males)
#' Juges <- c('F1','M2', 'F3', 'F4', 'M5', 'M6', 'M7', 'M8', 'F9', 'M10')
#'
#' # 1.3. Get the sorting data
#' SortData <- c(1, 4, 3, 4, 1, 1, 2, 2, 1, 3,
#' 4, 5, 2, 5, 2, 3, 1, 1, 4, 3,
#' 3, 1, 2, 3, 2, 4, 3, 1, 1, 2,
#' 4, 2, 3, 3, 1, 1, 1, 2, 1, 4,
#' 1, 5, 3, 5, 2, 1, 1, 2, 1, 3,
#' 2, 3, 1, 1, 3, 5, 4, 4, 3, 1,
#' 1, 4, 3, 4, 1, 1, 2, 2, 2, 4,
#' 5, 2, 4, 2, 4, 2, 5, 3, 4, 5)
#' # 1.4 Create a data frame
#' Sort <- matrix(SortData,ncol = 10, byrow= TRUE, dimnames = list(BeerName, Juges))
#' # (alternatively we could have read a csv file)
#' # 1.5 Example of how to read a csv filw
#' # Sort <- read.table("BeeerSortingTask.csv", header=TRUE,
#' # sep=",", na.strings="NA", dec=".", row.names=1, strip.white=TRUE)
#'
#' #------------------------------------------------------------------
#' # 2. Create the set of distance matrices
#' # (one distance matrix per assessor)
#' # (uses the function DistanceFromSort)
#' DistanceCube <- DistanceFromSort(Sort)
#' #------------------------------------------------------------------
#' # 3. Call the DISTATIS routine with the cube of distance as parameter
#' testDistatis <- distatis(DistanceCube)
#' # The factor scores for the beers are in
#' # testDistatis$res4Splus$F
#' # the factor scores for the assessors are in (RV matrice)
#' # testDistatis$res4Cmat$G
#'
#' #------------------------------------------------------------------
#' # 4. Inferences on the beers obtained via bootstrap
#' # here we use two different bootstraps:
#' # 1. Bootstrap on factors (very fast but could be too liberal
#' # when the number of assessors is very large)
#' # 2. Complete bootstrap obtained by computing sets of compromises
#' # and projecting them (could be significantly longer because a lot
#' # of computations is required)
#' #
#' # 4.1 Get the bootstrap factor scores (with default 1000 iterations)
#' BootF <- BootFactorScores(testDistatis$res4Splus$PartialF)
#' #
#' # 4.2 Get the boostrap from full bootstrap (default niter = 1000)
#' F_fullBoot <- BootFromCompromise(DistanceCube,niter=1000)
#'
#'
#' #------------------------------------------------------------------
#' # 5. Create the Graphics
#' # 5.1 an Rv map
#' rv.graph.out <- GraphDistatisRv(testDistatis$res4Cmat$G)
#' # 5.2 a compromise plot
#' compromise.graph.out <- GraphDistatisCompromise(testDistatis$res4Splus$F)
#' # 5.3 a partial factor score plot
#' partial.scores.graph.out <-
#' GraphDistatisPartial(testDistatis$res4Splus$F,testDistatis$res4Splus$PartialF)
#' # 5.4 a bootstrap confidence interval plot
#' #5.4.1 with ellipses
#' boot.graph.out.ell <- GraphDistatisBoot(testDistatis$res4Splus$F,BootF)
#' #or
#' # boot.graph.out <- GraphDistatisBoot(testDistatis$res4Splus$F,F_fullBoot)
#' #5.4.2 with hulls
#' boot.graph.out.hull <- GraphDistatisBoot(testDistatis$res4Splus$F,BootF,ellipses=FALSE)
#' #or
#' # boot.graph.out <- GraphDistatisBoot(testDistatis$res4Splus$F,F_fullBoot,ellipses=FALSE)
#' #5.5 all the plots at once
#' all.plots.out <-
#' GraphDistatisAll(testDistatis$res4Splus$F,testDistatis$res4Splus$PartialF,
#' BootF,testDistatis$res4Cmat$G)
#'
#'
#'
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.