library(knitr) opts_chunk$set( collapse = TRUE, comment = "#>" )
library(scales) library(ggplot2) library(data.table) library(hutils) library(hutilscpp) library(fst) library(magrittr)
library(PSMA)
psma_env <- getOption("PSMA_env", new.env())
dt <- "ADDRESS_DETAIL_ID__by__LATLON" if (exists(dt, envir = psma_env)) { x <- get(dt, envir = psma_env, inherits = FALSE) } else { x <- fst::read_fst(system.file("extdata", "address2.fst", package = "PSMA", mustWork = TRUE), as.data.table = TRUE) x[, "LATITUDE" := lat_int + lat_rem / 10^7] x[, "LONGITUDE" := lon_int + lon_rem / 10^7] assign(dt, value = x, envir = psma_env) } ADDRESS_DETAIL_ID__by__LATLON <- x
Consider the problem of geocoding the City of Melbourne's parking spaces.
latlon_by_bayid <- fread(system.file("extdata", "MEL-latlon_by_bayid.tsv", package = "PSMA"))
There are r comma(nrow(ADDRESS_DETAIL_ID__by__LATLON))
addresses in the PSMA data base. With
r nrow(latlon_by_bayid)
parking spaces to geocode, a naive cross join requires
r round(nrow(ADDRESS_DETAIL_ID__by__LATLON) * as.double(nrow(latlon_by_bayid)) / 1e9, 1)
billion
distance calculations.
The package hutils
provides a lightweight haversine_distance
function that only uses
primitive functions. It's essentially as fast as it can be. Yet, if we extrapolate from the
cost of a naive way to reverse geocode the first parking bay,
bench_naive_distance_cj <- bench::system_time({ haversine_distance(latlon_by_bayid$lat[1], latlon_by_bayid$lon[1], ADDRESS_DETAIL_ID__by__LATLON$LATITUDE, ADDRESS_DETAIL_ID__by__LATLON$LONGITUDE) %>% which.min }) bench_naive_distance_cj * nrow(latlon_by_bayid)
we see that this is not very satisfactory.
We can do better with little work.
A priori, we know that these parking spots are in Melbourne. In particular, we know that all the possible addresses are going to be in a small, compact area. So let's restrict the search to addresses within 6 minutes of a degree around the parking locations.
bench::system_time({ min_lat <- latlon_by_bayid[, min(lat)] - 0.1 max_lat <- latlon_by_bayid[, max(lat)] + 0.1 min_lon <- latlon_by_bayid[, min(lon)] - 0.1 max_lon <- latlon_by_bayid[, max(lon)] + 0.1 addresses_near_MEL <- ADDRESS_DETAIL_ID__by__LATLON %>% .[LATITUDE %between% c(min_lat, max_lat)] %>% .[LONGITUDE %between% c(min_lon, max_lon)] })
bench_nearby_distance_cj <- bench::system_time({ haversine_distance(latlon_by_bayid$lat[1], latlon_by_bayid$lon[1], addresses_near_MEL$LATITUDE, addresses_near_MEL$LONGITUDE) %>% which.min }) bench_nearby_distance_cj * nrow(latlon_by_bayid)
There is another potential for performance improvement that may be peculiar to the PSMA data: Many of the addresses have identical latitude and longitude:
addresses_near_MEL %>% .[, lapply(.SD, round, 5)] %>% .[, lapply(.SD, uniqueN), .SDcols = -1] %>% .[, lapply(.SD, "/", nrow(addresses_near_MEL))] %>% .[, lapply(.SD, percent)] %>% kable
find the emptiest portion of the rectangle; the smallest distance to this point is the R to use in match_min_Haversine
Idea: calculate midpoint of all pairs of points, and the radius associated with each midpoint
for each midpoint, find the largest radius that contains none of the original points (nope think of a square with 3 points)
x <- sort(runif(10)) y <- sort(runif(10))
N <- 200 DT <- data.table(x = runif(N, -1, 1) + cumsum(rt(N, 2) / 5) + cumsum(rnorm(N)), y = runif(N, -1, 1) + cumsum(rt(N, 2) / 5) + cumsum(rnorm(N))) setkey(DT, x) identify_ball <- function(DT) { res <- DT[, hutilscpp:::inacessibleBall(x, y, min(y), max(y))] res <- as.data.table(res) ggplot(NULL) + geom_point(data = DT, mapping = aes(x, y)) + geom_point(data = res, aes(x = x_centre, y = y_centre), color = "red") + geom_rect(data = res, aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax), fill = NA, color = "red") } identify_ball(DT)
Construct partition:
author_rstar_pages <- function(DT, lat, lon, shallow = FALSE, verbose = FALSE) { LATITUDE <- as.character(substitute(lat)) LONGITUDE <- as.character(substitute(lon)) .DT <- hutils::selector(DT, cols = c(LATITUDE, LONGITUDE), shallow = shallow) as.character(Sys.time()) DT0 <- unique(DT0, by = c("LATITUDE", "LONGITUDE")) npoints <- DT0[, .N] xrange <- DT0[, range_rcpp(LONGITUDE)] yrange <- DT0[, range_rcpp(LATITUDE)] for (i in 1:31) { # 2^31 maximum integer if (npoints < 2^i) { break } hutilscpp:::cut_DT(DT0, depth = i, x_range = xrange, y_range = yrange) } as.character(Sys.time()) # About a minute Ns <- integer(length(DT0)) DT1 <- copy(DT0) L1_20 <- lapply(1:20, function(x) data.table()) for (P in 1:20) { cat(P, "\n") cat(as.character(Sys.time()), "\n") DTp <- DT1[, N := .N, keyby = c(paste0("xbreaks", P), paste0("ybreaks", P))] if (DTp[, min(N)] < 4096L) { out <- DTp[N < 4096L][, .(minLATITUDE = min(LATITUDE), maxLATITUDE = max(LATITUDE), minLONGITUDE = min(LONGITUDE), maxLONGITUDE = max(LONGITUDE), theP = P, xbreaks13_min = min(xbreaks13), xbreaks13_max = max(xbreaks13), ybreaks13_min = min(ybreaks13), ybreaks13_max = max(ybreaks13)), keyby = c(paste0("xbreaks", P), paste0("ybreaks", P))] L1_20[[P]] <- out DT1 <- DT1[!out, on = c(key(DTp))] cat(as.character(Sys.time()), "\t", nrow(DT1), "\n") } else { data.table() } if (nrow(DT1) == 0L) { break } cat(as.character(Sys.time()), "\n\n") } }
Vignettes are long form documentation commonly included in packages. Because they are part of the distribution of the package, they need to be as compact as possible. The html_vignette
output type provides a custom style sheet (and tweaks some options) to ensure that the resulting html is as small as possible. The html_vignette
format:
Note the various macros within the vignette
section of the metadata block above. These are required in order to instruct R how to build the vignette. Note that you should change the title
field and the \VignetteIndexEntry
to match the title of your vignette.
The html_vignette
template includes a basic CSS theme. To override this theme you can specify your own CSS in the document metadata as follows:
output: rmarkdown::html_vignette: css: mystyles.css
The figure sizes have been customised so that you can easily put two images side-by-side.
plot(1:10) plot(10:1)
You can enable figure captions by fig_caption: yes
in YAML:
output: rmarkdown::html_vignette: fig_caption: yes
Then you can use the chunk option fig.cap = "Your figure caption."
in knitr.
You can write math expressions, e.g. $Y = X\beta + \epsilon$, footnotes^[A footnote here.], and tables, e.g. using knitr::kable()
.
knitr::kable(head(mtcars, 10))
Also a quote using >
:
"He who gives up [code] safety for [code] speed deserves neither." (via)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.