Models come in many types... {.flexbox .vcenter}

{ width=100% }

The purpose of a model... {.flexbox .vcenter}

- A model captures the essence of an object or process - A model should be appropriate for the specific task or questions
![](images/RPiR2b-weather.png){ width=60% }

The purpose of a model... {.flexbox .vcenter}

{ width=70% }

"A model should be as simple as possible but no simpler..."

Albert Einstein

Why build mathematical models?

Uses of epidemiological models {.flexbox .vcenter}

- Understand disease dynamics - Estimate important parameters - Identify where we need more data - Explore control options - Make predictions ![](images/RPiR2b-map.png){ width=80% }

Implementing a model... {.flexbox .vcenter}

{ width=60% }

Implementing a model... {.flexbox .vcenter}

{ width=60% }

Simple population dynamics

Exponential growth or decline

{ width=60% }

Exponential growth or decline

{ width=60% }

Exponential growth or decline

{ width=60% }

Exponential growth or decline

{ width=60% }

Hamster population explosion {.flexbox .vcenter}

{ width=80% }

Human population growth

Initial conditions

$$\begin{eqnarray} N(t = 0) &=& N_0 \ &=& 7\ 000\ 000\ 000 \end{eqnarray}$$

Parameters

The difference equation model

$$N(t + 1) = \lambda \times N(t) + N(t)$$ - where $\lambda = 0.015$

Changing the time step

$$N(t + 1) = (\lambda / 12) \times N(t) + N(t)$$

Return to time steps of a year

$$N(t + 1) = \lambda \times N(t) + N(t)$$

How long until population doubles?

$$N(t + 1) = \lambda \times N(t) + N(t)$$

$$ \mathit{i.e.\quad} N(t + 1) = (\lambda + 1) \times N(t)$$

How long until population doubles?

$$\begin{eqnarray} N(t + 2) &=& (\lambda + 1) \times N(t + 1) \ &=& (\lambda + 1)\times(\lambda + 1) \times N(t) \ &=& (\lambda + 1)^2 \times N(t) \end{eqnarray}$$

How long until population doubles?

$$N(t + n) = (\lambda + 1)^n \times N(t)$$

So, the number of years ($n$) taken to double is the $n$ that satisfies

$$(\lambda + 1)^n = 2$$

Solving the equation

$$\begin{eqnarray} (\lambda + 1)^n &=& 2 \ \log((\lambda + 1)^n) &=& \log(2) \ n \times \log(\lambda + 1) &=& \log(2) \ n &=& \log(2) / \log(\lambda + 1) \ n &=& 46.6 \end{eqnarray}$$

Doubling time

Fixed doubling time

{ width=80% }

Model types

Model types

Model types

Practicals



IBAHCM/RPiR documentation built on Jan. 12, 2023, 7:41 p.m.