Basic reproduction number, $R_0$

"the average number of secondary cases arising from an infected individual introduced into a fully susceptible population"

Basic reproduction number $R_0 > 1$

$R_0 > 1$

{ width=80% }

$R_0 > 1$

{ width=80% }

$R_0 > 1$

{ width=80% }

$R_0 > 1$

{ width=80% }

$R_0 > 1$

{ width=80% }

$R_0 > 1$

{ width=80% }

Basic reproduction number $R_0 < 1$

$R_0 < 1$

{ width=80% }

$R_0 < 1$

{ width=80% }

$R_0 < 1$

{ width=80% }

$R_0 < 1$

{ width=80% }

Outbreak behaviour depends on $R_0$

Epidemic dynamics

{ width=60% }

Model structure {.flexbox .vcenter .smaller}

- Determined by the biology of the infection - do infected individuals die? - do infected individuals recover? - are recovered individuals immune? - are there latently infected individuals?
![](images/RPiR4b-structure.png){ width=100% }

SIR process {.flexbox .vcenter}

{ width=80% }

Terminology

Modelling transmission

$$\beta \times I \times \frac{S}{N}$$

Modelling recovery

$$\sigma \times I$$

SIR model in difference equation form

$$S_{t+1} = S_t - \beta \times I_t \times (\frac{S_t}{N})$$

SIR model in difference equation form

$$S_{t+1} = S_t - \beta \times I_t \times (\frac{S_t}{N})$$

$$I_{t+1} = I_t + \beta \times I_t \times (\frac{S_t}{N}) - \sigma \times I_t$$

SIR model in difference equation form

$$S_{t+1} = S_t - \beta \times I_t \times (\frac{S_t}{N})$$

$$I_{t+1} = I_t + \beta \times I_t \times (\frac{S_t}{N}) - \sigma \times I_t$$

$$R_{t+1} = R_t + \sigma \times I_t$$

SIS process

{ width=80% }

SIS model in difference equation form

$$S_{t+1} = S_t – \beta \times I_t \times \frac{S_t}{N} + \sigma \times I_t$$

$$I_{t+1} = I_t + \beta \times I_t \times \frac{S_t}{N} – \sigma \times I_t$$

Confusing notation...

$$\beta \times I \times (\frac{S}{N})$$

is the same as…

$$\beta I(\frac{S}{N})$$

is the same as

$$\frac{\beta I S}{N}$$

Basic reproduction number, $R_0$

"the average number of secondary cases arising from an infected individual introduced into a fully susceptible population"

Calculating $R_0$

$$\begin{align} R_0 = {} & \textrm{number of new infections per day} \ & \textrm{arising from 1 infected in a fully} \ & \textrm{susceptible population}\; \times \ & \textrm{number of days infectious} \end{align}$$

Calculating $R_0$

$$\begin{align} R_0 = {} & \textrm{number of new infections per day} \ & \textrm{arising from 1 infected in a fully} \ & \textrm{susceptible population}\; \times \ & \textrm{number of days infectious} \ = {} & \beta \times \textrm{number of days infectious} \end{align}$$

Note on rates and duration

Calculating $R_0$

$$\begin{align} R_0 = {} & \textrm{number of new infections per day} \ & \textrm{arising from 1 infected in a fully} \ & \textrm{susceptible population}\; \times \ & \textrm{number of days infectious} \ = {} & \beta \times \textrm{number of days infectious} \end{align}$$

Calculating $R_0$

$$\begin{align} R_0 = {} & \textrm{number of new infections per day} \ & \textrm{arising from 1 infected in a fully} \ & \textrm{susceptible population}\; \times \ & \textrm{number of days infectious} \ = {} & \beta \times \textrm{number of days infectious} \ = {} & \beta \times \frac{1}{\textrm{recovery rate}} \end{align}$$

Calculating $R_0$

$$\begin{align} R_0 = {} & \textrm{number of new infections per day} \ & \textrm{arising from 1 infected in a fully} \ & \textrm{susceptible population}\; \times \ & \textrm{number of days infectious} \ = {} & \beta \times \textrm{number of days infectious} \ = {} & \beta \times \frac{1}{\textrm{recovery rate}} \ = {} & \beta \times \frac{1}{\sigma} = \frac{\beta}{\sigma} \end{align}$$

Calculating $R_0$

$$\begin{align} R_0 = {} & \textrm{number of new infections per day} \ & \textrm{arising from 1 infected in a fully} \ & \textrm{susceptible population}\; \times \ & \textrm{number of days infectious} \ = {} & \beta \times \textrm{number of days infectious} \ = {} & \beta \times \frac{1}{\textrm{recovery rate}} \ = {} & \beta \times \frac{1}{\sigma} = \frac{\beta}{\sigma} \ = {} & \frac{transmission.rate}{recovery.rate} \end{align}$$

Epidemic dynamics for SIR, $R_0 = 2$

{ width=60% }

Epidemic dynamics for SIR, $R_0 = 2$

{ width=60% }

Epidemic dynamics for SIR, $R_0 = 2$

{ width=60% }

Epidemic dynamics for SIR, $R_0 = 2$

{ width=60% }

Epidemic dynamics for SIR, $R_0 = 2$

{ width=60% }

Epidemic dynamics for SIR, $R_0 = 2$

{ width=60% }

Epidemic dynamics for SIR, $R_0 = 2$

{ width=60% }

Key features of dynamics

Key features of dynamics

Basic reproduction number $R_0 < 1$

$R_0 < 1$

{ width=80% }

$R_0 < 1$

{ width=80% }

$R_0 < 1$

{ width=80% }

$R_0 < 1$

{ width=80% }

Dynamics for $R_0 = 0.5$

{ width=60% }

SIS process

{ width=80% }

SIS model in difference equation form

$$S_{t+1} = S_t – \beta \times I_t \times \frac{S_t}{N} + \sigma \times I_t$$

$$I_{t+1} = I_t + \beta \times I_t \times \frac{S_t}{N} – \sigma \times I_t$$

SIS simulation for $R_0 = 3$

{ width=60% }

SIS simulation for $R_0 = 3$

{ width=60% }

Practicals



IBAHCM/RPiR documentation built on Jan. 12, 2023, 7:41 p.m.