"the average number of secondary cases arising from an infected individual introduced into a fully susceptible population"
$S(t)$, $S_t$ or $S$ is the number of susceptibles
$I(t)$, $I_t$ or $I$ is the number of infecteds
$R(t)$, $R_t$ or $R$ is the number of recovereds
$N$ is the total population size
$$\beta \times I \times \frac{S}{N}$$
$$\sigma \times I$$
$$S_{t+1} = S_t - \beta \times I_t \times (\frac{S_t}{N})$$
$$S_{t+1} = S_t - \beta \times I_t \times (\frac{S_t}{N})$$
$$I_{t+1} = I_t + \beta \times I_t \times (\frac{S_t}{N}) - \sigma \times I_t$$
$$S_{t+1} = S_t - \beta \times I_t \times (\frac{S_t}{N})$$
$$I_{t+1} = I_t + \beta \times I_t \times (\frac{S_t}{N}) - \sigma \times I_t$$
$$R_{t+1} = R_t + \sigma \times I_t$$
$$S_{t+1} = S_t – \beta \times I_t \times \frac{S_t}{N} + \sigma \times I_t$$
$$I_{t+1} = I_t + \beta \times I_t \times \frac{S_t}{N} – \sigma \times I_t$$
$$\beta \times I \times (\frac{S}{N})$$
is the same as…
$$\beta I(\frac{S}{N})$$
is the same as
$$\frac{\beta I S}{N}$$
"the average number of secondary cases arising from an infected individual introduced into a fully susceptible population"
$$\begin{align} R_0 = {} & \textrm{number of new infections per day} \ & \textrm{arising from 1 infected in a fully} \ & \textrm{susceptible population}\; \times \ & \textrm{number of days infectious} \end{align}$$
$$\begin{align} R_0 = {} & \textrm{number of new infections per day} \ & \textrm{arising from 1 infected in a fully} \ & \textrm{susceptible population}\; \times \ & \textrm{number of days infectious} \ = {} & \beta \times \textrm{number of days infectious} \end{align}$$
Infectious period = $\frac{1}{0.1}$ = 10 days
Infectious period = 3 weeks
$$\begin{align} R_0 = {} & \textrm{number of new infections per day} \ & \textrm{arising from 1 infected in a fully} \ & \textrm{susceptible population}\; \times \ & \textrm{number of days infectious} \ = {} & \beta \times \textrm{number of days infectious} \end{align}$$
$$\begin{align} R_0 = {} & \textrm{number of new infections per day} \ & \textrm{arising from 1 infected in a fully} \ & \textrm{susceptible population}\; \times \ & \textrm{number of days infectious} \ = {} & \beta \times \textrm{number of days infectious} \ = {} & \beta \times \frac{1}{\textrm{recovery rate}} \end{align}$$
$$\begin{align} R_0 = {} & \textrm{number of new infections per day} \ & \textrm{arising from 1 infected in a fully} \ & \textrm{susceptible population}\; \times \ & \textrm{number of days infectious} \ = {} & \beta \times \textrm{number of days infectious} \ = {} & \beta \times \frac{1}{\textrm{recovery rate}} \ = {} & \beta \times \frac{1}{\sigma} = \frac{\beta}{\sigma} \end{align}$$
$$\begin{align} R_0 = {} & \textrm{number of new infections per day} \ & \textrm{arising from 1 infected in a fully} \ & \textrm{susceptible population}\; \times \ & \textrm{number of days infectious} \ = {} & \beta \times \textrm{number of days infectious} \ = {} & \beta \times \frac{1}{\textrm{recovery rate}} \ = {} & \beta \times \frac{1}{\sigma} = \frac{\beta}{\sigma} \ = {} & \frac{transmission.rate}{recovery.rate} \end{align}$$
Not all individuals become infected
Chain of transmission eventually halts due to insufficient susceptibles, not a complete lack of susceptibles
$$S_{t+1} = S_t – \beta \times I_t \times \frac{S_t}{N} + \sigma \times I_t$$
$$I_{t+1} = I_t + \beta \times I_t \times \frac{S_t}{N} – \sigma \times I_t$$
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.