Get the latest version of ProFit:
library(devtools) install_github('ICRAR/ProFit')
First load the libraries we need:
library(ProFit)
Next we load a table of data describing GAMA galaxies:
data('ExampleInit', package="ProFit") head(ExampleInit, 10)
Here we will use an SDSS example:
datasource='SDSS'
Now we can extract out the example files we have available for fitting by checking the contents of the directory containing the example FITS files:
ExampleFiles=list.files(system.file("extdata",datasource,package="ProFit")) ExampleIDs=unlist(strsplit(ExampleFiles[grep('fitim',ExampleFiles)],'fitim.fits')) ExampleIDs
There are 10 example galaxies included. Here we run example 1:
useID=ExampleIDs[1] psf = Rfits_read_image(system.file("extdata", paste0(datasource,'/',useID,'psfim.fits'), package="ProFit"))$imDat psf=psf/sum(psf) psfsigma=sqrt(abs(psf))/200 #To get reasonable PSF errors
We can check the image of the PSF with magimage:
temp=magimage(psf,lo=0,hi=1) contour(temp, add=T, col='red', drawlabels=FALSE)
To check the profile a few 1D plots can be useful:
magplot(psf[13,],type='l') lines(psf[12,],lty=2,col='red') lines(psf[14,],lty=2,col='blue') lines(psf[11,],lty=3,col='red') lines(psf[15,],lty=3,col='blue')
The red and blue lines fall pretty much on top of each other, so there is not much ellipticity.
We can use ProFit to fit an analytic Moffat function to the PSF to properly characterise this.
modellist=list( moffat=list( xcen=dim(psf)[1]/2, ycen=dim(psf)[2]/2, mag=0, fwhm=2.5, con=3, ang=0, axrat=0.9, box=0 ) ) modellist
We can check what this default model looks like:
psfmodel=profitMakeModel(modellist,dim=c(25,25))$z
magimage(psfmodel) magimage(abs(psfmodel-psf)/psfmodel,zlim=c(0,1))
We will fit everything:
tofit=list( moffat=list( xcen=TRUE, ycen=TRUE, mag=TRUE, fwhm=TRUE, con=TRUE, ang=TRUE, axrat=TRUE, box=TRUE ) )
And choose sensible options for which parameters to fit in log-space:
tolog=list( moffat=list( xcen=FALSE, ycen=FALSE, mag=FALSE, fwhm=FALSE, con=TRUE, ang=FALSE, axrat=TRUE, box=FALSE ) )
The intervals will be generous:
intervals=list( moffat=list( xcen=list(lim=c(0,25)), ycen=list(lim=c(0,25)), mag=list(lim=c(-1,1)), fwhm=list(lim=c(0.1,10)), con=list(lim=c(1,20)), ang=list(lim=c(-180,360)), axrat=list(lim=c(0.1,1)), box=list(lim=c(-1,1)) ) )
Now setup the Data structure we need for fitting, where we will use Normal likelihoods:
Data=profitSetupData(image=psf, mask=(psf==0), sigma=psfsigma, modellist=modellist, tofit=tofit, tolog=tolog, intervals=intervals, magzero=0, algo.func='optim', verbose=TRUE, like.func='norm')
Check our rough model:
profitLikeModel(parm=Data$init, Data=Data, makeplots=TRUE, plotchisq=TRUE)
The initial rough model for the SDSS does not look great- clearly the PSF is much rounder than we guessed.
To stop the guess-work we can now optimise the model with BFGS:
optimfit=optim(Data$init, profitLikeModel, method='BFGS', Data=Data, control=list(fnscale=-1))
Check the final result:
profitLikeModel(optimfit$par, Data,makeplots=TRUE, plotchisq=TRUE)
You can go even further with a full MCMC fit (I can assure you that in this case it is not worth the effort, but run if you must!):
Data$algo.func="LD" LDfit=LaplacesDemon(profitLikeModel, Initial.Values=optimfit$par, Data=Data, Iterations=1e4, Algorithm='CHARM', Thinning=1, Specs=list(alpha.star=0.44))
Check the final result:
profitLikeModel(LDfit$Summary2[,1], Data,makeplots=TRUE, plotchisq=TRUE)
Since the full MCMC achieves the same fit (more or less) we will procede with the optim fit. In the resultant fit we see that the FWHM is given as ~3, which given the SDSS pixel scale (0.339 asec/pix) is ~1 asec, which is pretty good for SDSS imaging. The PSF is preferred as being close to an axial ratio ~1 (or ~0 in log-space). We do find significant boxiness, so the PSF is not actually perfectly circular. We can see this visually in fact:
PSFmodellist=profitRemakeModellist(optimfit$par, modellist, tofit=tofit, tolog=tolog, intervals=intervals)$modellist PSFmodellist$moffat$xcen=12.5 PSFmodellist$moffat$ycen=12.5 PSFmodellist$moffat$mag=0 psfmodel=profitMakeModel(PSFmodellist, dim=c(25,25))$z contour(magimage(psfmodel), add=TRUE, col='red', drawlabels=FALSE)
Notice in the above we set a few parameters to be exactly where we want, e.g. the PSF should be in the middle of our 25x25 image matrix (the fit was at 12.51 and 12.51 rather than 12.5 and 12.5) and the magnitude should be exactly 0 (i.e. the integral of the PSF sums to 1). We now have an analytic means of describing the SDSS PSF. We can use this for subsequent fitting.
useID=ExampleIDs[1] image = Rfits_read_image(system.file("extdata", paste0(datasource,'/',useID,'fitim.fits',sep=''), package="ProFit"))$imDat sigma = Rfits_read_image(system.file("extdata", paste0(datasource,'/',useID,'sigma.fits',sep=''), package="ProFit"))$imDat segim = Rfits_read_image(system.file("extdata", paste0(datasource,'/',useID,'segim.fits',sep=''), package="ProFit"))$imDat
Next we extract parameters for a very rough model (not meant to look too good yet):
useIDnum=as.integer(strsplit(useID,'G')[[1]][2]) useloc=which(ExampleInit$CATAID==useIDnum)
For our initial model we treat component 1 as the putative bulge and component 2 as the putative disk. We are going to attempt a fit where the disk is forced to have nser=1 and the bulge has an axial ratio of 1.
modellist=list( sersic=list( xcen= c(dim(image)[1]/2, dim(image)[1]/2), ycen= c(dim(image)[2]/2, dim(image)[2]/2), mag= c(ExampleInit$sersic.mag1[useloc], ExampleInit$sersic.mag2[useloc]), re= c(ExampleInit$sersic.re1[useloc], ExampleInit$sersic.re2[useloc])* if(datasource=='KiDS'){1}else{0.2/0.339}, nser= c(ExampleInit$sersic.nser1[useloc], 1), #Disk is initially nser=1 ang= c(ExampleInit$sersic.ang2[useloc], ExampleInit$sersic.ang2[useloc]), axrat= c(1, ExampleInit$sersic.axrat2[useloc]), #Bulge is initially axrat=1 box=c(0, 0) ) ) modellist
The pure model (no PSF):
magimage(profitMakeModel(modellist,dim=dim(image)))
The original image:
magimage(image)
The convolved model (with PSF):
magimage(profitMakeModel(modellist,dim=dim(image),psf=psfmodel))
Next we define our list of what we want to fit (where TRUE means we will fit it later):
tofit=list( sersic=list( xcen= c(TRUE,NA), #We fit for xcen and tie the two togther ycen= c(TRUE,NA), #We fit for ycen and tie the two togther mag= c(TRUE,TRUE), #Fit for both re= c(TRUE,TRUE), #Fit for both nser= c(TRUE,FALSE), #Fit for bulge ang= c(FALSE,TRUE), #Fit for disk axrat= c(FALSE,TRUE), #Fit for disk box= c(FALSE,FALSE) #Fit for neither ) )
Now we define what parameters should be fitted in log space:
tolog=list( sersic=list( xcen= c(FALSE,FALSE), ycen= c(FALSE,FALSE), mag= c(FALSE,FALSE), re= c(TRUE,TRUE), #re is best fit in log space nser= c(TRUE,TRUE), #nser is best fit in log space ang= c(FALSE,FALSE), axrat= c(TRUE,TRUE), #axrat is best fit in log space box= c(FALSE,FALSE) ) )
The hard intervals should also be specified in linear space:
intervals=list( sersic=list( xcen=list(lim=c(0,300),lim=c(0,300)), ycen=list(lim=c(0,300),lim=c(0,300)), mag=list(lim=c(10,30),lim=c(10,30)), re=list(lim=c(1,100),lim=c(1,100)), nser=list(lim=c(0.5,20),lim=c(0.5,20)), ang=list(lim=c(-180,360),lim=c(-180,360)), axrat=list(lim=c(0.1,1),lim=c(0.1,1)), box=list(lim=c(-1,1),lim=c(-1,1)) ) )
Setup the data structure we need for optimisation, taking a few seconds to find the optimal convolution method:
Data=profitSetupData(image=image, sigma=sigma, segim=segim, psf=psfmodel, modellist=modellist, tofit=tofit, tolog=tolog, intervals=intervals, magzero=0, algo.func='optim', like.func="t", verbose=TRUE)
We will try optim
BFGS:
optimfitMod=optim(Data$init, profitLikeModel, method='BFGS', Data=Data, control=list(fnscale=-1))
The best optim
BFGS fit is given by:
optimfitMod$par
Check it out:
profitLikeModel(optimfitMod$par,Data,makeplots=TRUE,whichcomponents=list(sersic=1)) profitLikeModel(optimfitMod$par,Data,makeplots=TRUE,whichcomponents=list(sersic=2)) profitLikeModel(optimfitMod$par,Data,makeplots=TRUE,whichcomponents=list(sersic='all'))
modeloptim=profitRemakeModellist(optimfitMod$par,Data$modellist,Data$tofit,Data$tolog)$modellist profitEllipsePlot(Data,modeloptim,pixscale=0.339,FWHM=1,SBlim=26)
Now we can try the empirical PSF instead (for comparison):
Data=profitSetupData(image=image, sigma=sigma, segim=segim, psf=psf, modellist=modellist, tofit=tofit, tolog=tolog, intervals=intervals, magzero=0, algo.func='optim', like.func="t", verbose=TRUE)
We will try optim
BFGS:
optimfitEmp=optim(Data$init, profitLikeModel, method='BFGS', Data=Data, control=list(fnscale=-1))
The best optim
L-BFGS-B fit is given by:
optimfitEmp$par
Check it out:
profitLikeModel(optimfitEmp$par,Data,makeplots=TRUE,whichcomponents=list(sersic=1)) profitLikeModel(optimfitEmp$par,Data,makeplots=TRUE,whichcomponents=list(sersic=2)) profitLikeModel(optimfitEmp$par,Data,makeplots=TRUE,whichcomponents=list(sersic='all'))
modeloptim=profitRemakeModellist(optimfitEmp$par,Data$modellist,Data$tofit,Data$tolog)$modellist profitEllipsePlot(Data,modeloptim,pixscale=0.339,FWHM=1,SBlim=26)
Fitting using the empirical PSF gives similar results and best-fit LL (slightly better LL), but a larger bulge Re and a brighter bulge magnitude. It makes sense the model versus empirical PSF would disagree most for bulge parameters- these are dominated by the core region where the resolution is barely above the PSF itself.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.