vcovFPC | R Documentation |
vcovFPC
Obtain finite-population-adjusted standard errors for
fixed effects estimates for a fitted multilevel modelvcovFPC
Obtain finite-population-adjusted standard errors for
fixed effects estimates for a fitted multilevel model
vcovFPC(object, ...)
## S3 method for class 'merMod'
vcovFPC(object, popsize2 = NULL, popsize1 = NULL, KR = FALSE)
## S3 method for class 'lme'
vcovFPC(object, popsize2 = NULL, popsize1 = NULL, KR = FALSE)
object |
an R object of class merMod as resulting from lmer() or an object of class lme resulting from lme(). |
popsize2 |
population size at Level-2; if NULL, an infinite Level-2 population is assumed. |
popsize1 |
population size at Level-1; if NULL, an infinite Level-1 population is assumed. |
KR |
Whether Kenward-Roger approximation of standard errors should be used, which is recommended for small number of clusters and average cluster size. Default to FALSE. Not available for lme objects. |
The variance-covariance matrix of the fixed effect estimates, as returned by vcov()
Mark H. C. Lai mark.lai@uc.edu, Oi-man Kwok, Yu-Yu Hsiao,
and Quina Cao. Updated by Stephen Tueller Stueller@rti.org for
compatibility with nlme
for inclusion in PersonAlytics
.
https://psycnet.apa.org/doiLanding?doi=10.1037
library(nlme)
library(lme4)
# illustrate equivalence in lme and merMod results with a simple ICT model
mod.lme <- lme(follicles ~ Time*Phase, data = OvaryICT, random = ~ Time | Mare,
method = 'ML')
mod.merMod <- lmer(follicles ~ Time*Phase + (Time | Mare), data = OvaryICT,
REML = FALSE)
tTable.lme <- data.frame( summary(mod.lme)$tTable[,1:2] )
tTable.merMod <- data.frame( coef(summary(mod.merMod))[,1:2] )
fpc.lme <- vcovFPC(mod.lme, popsize2 = 100)
fpc.merMod <- vcovFPC(mod.merMod, popsize2 = 100)
tTable.lme$FPC.Std.Error <- sqrt(diag(fpc.lme))
tTable.merMod$FPC.Std.Error <- sqrt(diag(fpc.merMod))
tTable.lme
tTable.merMod
# now show how the standard errors change whith an autocorrelation structure
mod.lmema2 <- lme(follicles ~ Time*Phase, data = OvaryICT, random = ~ Time | Mare,
method = 'ML', correlation = corARMA(q=2))
tTable.lmema2 <- data.frame( summary(mod.lmema2)$tTable[,1:2])
fpc.lmema2 <- vcovFPC(mod.lmema2, popsize2 = 100)
tTable.lmema2$FPC.Std.Error <- sqrt(diag(fpc.lmema2))
# including a good fitting autocorrelation structure reduces the standard
# errors relative to an unstructured correlation, and the FPC further
# reduces the standard errors (thought the correlation structure has a
# much bigger impact than the FPC)
tTable.lmema2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.