filter_overimputed | R Documentation |
Filtering overimputation of proteomics datasets
filter_overimputed(
x,
set.c,
genes.vc = "all",
sex.vc = "all",
imputed_thresh.n = 0.2
)
## S4 method for signature 'SummarizedExperiment'
filter_overimputed(
x,
set.c,
genes.vc = "LAT",
sex.vc = c("M", "F"),
imputed_thresh.n = 0.2
)
## S4 method for signature 'ExpressionSet'
filter_overimputed(
x,
set.c,
genes.vc = "LAT",
sex.vc = c("M", "F"),
imputed_thresh.n = 0.2
)
x |
An S4 object of class |
set.c |
Character: name of the data set |
genes.vc |
Character vector: with elements in 'LAT', 'MX2', and 'WT' |
sex.vc |
Character vector: with elements in 'M' and 'F' |
imputed_thresh.n |
Numeric: for proteomics datasets, the features with a too high proportion of imputed values in all conditions to be compared will be discarded |
logical vector corresponding to the selected features
set.c <- "proteomics_plasma"
# SummarizedExperiment
proteo.mae <- phenomis::reading(ProMetIS::post_processed_dir.c(),
subsets.vc = set.c)
proteo.se <- proteo.mae[[set.c]]
## adding (common) sample metadata to the summarized experiment
sample_meta.DF <- SummarizedExperiment::colData(proteo.mae)
SummarizedExperiment::colData(proteo.se)[, "gene"] <- sample_meta.DF[colnames(proteo.se), "gene"]
SummarizedExperiment::colData(proteo.se)[, "sex"] <- sample_meta.DF[colnames(proteo.se), "sex"]
feat_select.vl <- ProMetIS:::filter_overimputed(proteo.se, set.c = set.c, genes.vc = "MX2")
message(round(sum(feat_select.vl) / length(feat_select.vl) * 100), "% of selected features")
# ExpressionSet
proteo.mset <- phenomis::reading(ProMetIS::post_processed_dir.c(),
subsets.vc = set.c,
output.c = "set")
proteo.eset <- proteo.mset[[set.c]]
feat_select.vl <- ProMetIS:::filter_overimputed(proteo.eset, set.c = set.c, genes.vc = "MX2")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.