tests/testthat/_snaps/check_performance.md

valid parameters work

Code
  check_performance(res)
Output
                metric      est
  1       n_summarised   20.000
  2          size_mean 1250.000
  3            size_sd  551.076
  4        size_median 1200.000
  5           size_p25  850.000
  6           size_p75 1675.000
  7            size_p0  400.000
  8          size_p100 2000.000
  9        sum_ys_mean  282.000
  10         sum_ys_sd  125.760
  11     sum_ys_median  269.500
  12        sum_ys_p25  186.750
  13        sum_ys_p75  384.000
  14         sum_ys_p0   94.000
  15       sum_ys_p100  472.000
  16     ratio_ys_mean    0.226
  17       ratio_ys_sd    0.012
  18   ratio_ys_median    0.221
  19      ratio_ys_p25    0.220
  20      ratio_ys_p75    0.231
  21       ratio_ys_p0    0.215
  22     ratio_ys_p100    0.270
  23   prob_conclusive    0.800
  24     prob_superior    0.650
  25  prob_equivalence    0.150
  26     prob_futility    0.000
  27          prob_max    0.200
  28 prob_select_arm_A    0.000
  29 prob_select_arm_B    0.650
  30 prob_select_arm_C    0.000
  31  prob_select_none    0.350
  32              rmse    0.020
  33           rmse_te       NA
  34               mae    0.009
  35            mae_te       NA
  36               idp  100.000
Code
  check_performance(res, uncertainty = FALSE)
Output
                metric      est
  1       n_summarised   20.000
  2          size_mean 1250.000
  3            size_sd  551.076
  4        size_median 1200.000
  5           size_p25  850.000
  6           size_p75 1675.000
  7            size_p0  400.000
  8          size_p100 2000.000
  9        sum_ys_mean  282.000
  10         sum_ys_sd  125.760
  11     sum_ys_median  269.500
  12        sum_ys_p25  186.750
  13        sum_ys_p75  384.000
  14         sum_ys_p0   94.000
  15       sum_ys_p100  472.000
  16     ratio_ys_mean    0.226
  17       ratio_ys_sd    0.012
  18   ratio_ys_median    0.221
  19      ratio_ys_p25    0.220
  20      ratio_ys_p75    0.231
  21       ratio_ys_p0    0.215
  22     ratio_ys_p100    0.270
  23   prob_conclusive    0.800
  24     prob_superior    0.650
  25  prob_equivalence    0.150
  26     prob_futility    0.000
  27          prob_max    0.200
  28 prob_select_arm_A    0.000
  29 prob_select_arm_B    0.650
  30 prob_select_arm_C    0.000
  31  prob_select_none    0.350
  32              rmse    0.020
  33           rmse_te       NA
  34               mae    0.009
  35            mae_te       NA
  36               idp  100.000
Code
  check_performance(res, uncertainty = TRUE, boot_seed = 4131, n_boot = 100)
Condition
  Warning:
  values for n_boot < 1000 are not recommended, as they may cause instable results.
Output
                metric      est  err_sd err_mad    lo_ci    hi_ci
  1       n_summarised   20.000   0.000   0.000   20.000   20.000
  2          size_mean 1250.000 115.920 129.727 1031.875 1462.625
  3            size_sd  551.076  58.032  59.628  415.681  653.692
  4        size_median 1200.000 166.978 148.260  973.750 1600.000
  5           size_p25  850.000 189.979 222.390  500.000 1176.250
  6           size_p75 1675.000 231.369 352.118 1236.875 2000.000
  7            size_p0  400.000      NA      NA       NA       NA
  8          size_p100 2000.000      NA      NA       NA       NA
  9        sum_ys_mean  282.000  26.300  27.132  232.823  330.822
  10         sum_ys_sd  125.760  13.762  14.130   95.505  146.682
  11     sum_ys_median  269.500  38.722  39.289  210.275  357.987
  12        sum_ys_p25  186.750  38.798  45.590  129.819  260.275
  13        sum_ys_p75  384.000  50.837  58.192  276.794  462.000
  14         sum_ys_p0   94.000      NA      NA       NA       NA
  15       sum_ys_p100  472.000      NA      NA       NA       NA
  16     ratio_ys_mean    0.226   0.003   0.003    0.222    0.232
  17       ratio_ys_sd    0.012   0.004   0.005    0.005    0.019
  18   ratio_ys_median    0.221   0.003   0.002    0.220    0.229
  19      ratio_ys_p25    0.220   0.001   0.001    0.216    0.221
  20      ratio_ys_p75    0.231   0.004   0.004    0.222    0.235
  21       ratio_ys_p0    0.215      NA      NA       NA       NA
  22     ratio_ys_p100    0.270      NA      NA       NA       NA
  23   prob_conclusive    0.800   0.087   0.074    0.624    0.950
  24     prob_superior    0.650   0.103   0.111    0.450    0.800
  25  prob_equivalence    0.150   0.079   0.074    0.000    0.300
  26     prob_futility    0.000   0.000   0.000    0.000    0.000
  27          prob_max    0.200   0.087   0.074    0.050    0.376
  28 prob_select_arm_A    0.000   0.000   0.000    0.000    0.000
  29 prob_select_arm_B    0.650   0.103   0.111    0.450    0.800
  30 prob_select_arm_C    0.000   0.000   0.000    0.000    0.000
  31  prob_select_none    0.350   0.103   0.111    0.200    0.550
  32              rmse    0.020   0.004   0.003    0.011    0.026
  33           rmse_te       NA      NA      NA       NA       NA
  34               mae    0.009   0.005   0.003    0.005    0.025
  35            mae_te       NA      NA      NA       NA       NA
  36               idp  100.000   0.000   0.000  100.000  100.000
Code
  check_performance(res, uncertainty = TRUE, ci_width = 0.75, boot_seed = 4131,
    n_boot = 100)
Condition
  Warning:
  values for n_boot < 1000 are not recommended, as they may cause instable results.
Output
                metric      est  err_sd err_mad    lo_ci    hi_ci
  1       n_summarised   20.000   0.000   0.000   20.000   20.000
  2          size_mean 1250.000 115.920 129.727 1116.875 1383.125
  3            size_sd  551.076  58.032  59.628  471.321  600.569
  4        size_median 1200.000 166.978 148.260 1000.000 1400.000
  5           size_p25  850.000 189.979 222.390  600.000 1000.000
  6           size_p75 1675.000 231.369 352.118 1418.750 2000.000
  7            size_p0  400.000      NA      NA       NA       NA
  8          size_p100 2000.000      NA      NA       NA       NA
  9        sum_ys_mean  282.000  26.300  27.132  252.144  313.913
  10         sum_ys_sd  125.760  13.762  14.130  106.971  138.581
  11     sum_ys_median  269.500  38.722  39.289  220.000  303.000
  12        sum_ys_p25  186.750  38.798  45.590  135.000  220.000
  13        sum_ys_p75  384.000  50.837  58.192  314.719  433.000
  14         sum_ys_p0   94.000      NA      NA       NA       NA
  15       sum_ys_p100  472.000      NA      NA       NA       NA
  16     ratio_ys_mean    0.226   0.003   0.003    0.223    0.229
  17       ratio_ys_sd    0.012   0.004   0.005    0.006    0.016
  18   ratio_ys_median    0.221   0.003   0.002    0.220    0.225
  19      ratio_ys_p25    0.220   0.001   0.001    0.218    0.220
  20      ratio_ys_p75    0.231   0.004   0.004    0.225    0.235
  21       ratio_ys_p0    0.215      NA      NA       NA       NA
  22     ratio_ys_p100    0.270      NA      NA       NA       NA
  23   prob_conclusive    0.800   0.087   0.074    0.700    0.900
  24     prob_superior    0.650   0.103   0.111    0.500    0.750
  25  prob_equivalence    0.150   0.079   0.074    0.050    0.250
  26     prob_futility    0.000   0.000   0.000    0.000    0.000
  27          prob_max    0.200   0.087   0.074    0.100    0.300
  28 prob_select_arm_A    0.000   0.000   0.000    0.000    0.000
  29 prob_select_arm_B    0.650   0.103   0.111    0.500    0.750
  30 prob_select_arm_C    0.000   0.000   0.000    0.000    0.000
  31  prob_select_none    0.350   0.103   0.111    0.250    0.500
  32              rmse    0.020   0.004   0.003    0.014    0.023
  33           rmse_te       NA      NA      NA       NA       NA
  34               mae    0.009   0.005   0.003    0.007    0.018
  35            mae_te       NA      NA      NA       NA       NA
  36               idp  100.000   0.000   0.000  100.000  100.000
Code
  check_performance(res, restrict = "superior")
Output
                metric      est
  1       n_summarised   13.000
  2          size_mean 1084.615
  3            size_sd  493.028
  4        size_median 1200.000
  5           size_p25  600.000
  6           size_p75 1400.000
  7            size_p0  400.000
  8          size_p100 1900.000
  9        sum_ys_mean  244.000
  10         sum_ys_sd  107.973
  11     sum_ys_median  266.000
  12        sum_ys_p25  135.000
  13        sum_ys_p75  303.000
  14         sum_ys_p0   94.000
  15       sum_ys_p100  420.000
  16     ratio_ys_mean    0.227
  17       ratio_ys_sd    0.014
  18   ratio_ys_median    0.222
  19      ratio_ys_p25    0.220
  20      ratio_ys_p75    0.228
  21       ratio_ys_p0    0.216
  22     ratio_ys_p100    0.270
  23   prob_conclusive    1.000
  24     prob_superior    1.000
  25  prob_equivalence    0.000
  26     prob_futility    0.000
  27          prob_max    0.000
  28 prob_select_arm_A    0.000
  29 prob_select_arm_B    1.000
  30 prob_select_arm_C    0.000
  31  prob_select_none    0.000
  32              rmse    0.020
  33           rmse_te       NA
  34               mae    0.009
  35            mae_te       NA
  36               idp  100.000
Code
  check_performance(res, restrict = "selected")
Output
                metric      est
  1       n_summarised   13.000
  2          size_mean 1084.615
  3            size_sd  493.028
  4        size_median 1200.000
  5           size_p25  600.000
  6           size_p75 1400.000
  7            size_p0  400.000
  8          size_p100 1900.000
  9        sum_ys_mean  244.000
  10         sum_ys_sd  107.973
  11     sum_ys_median  266.000
  12        sum_ys_p25  135.000
  13        sum_ys_p75  303.000
  14         sum_ys_p0   94.000
  15       sum_ys_p100  420.000
  16     ratio_ys_mean    0.227
  17       ratio_ys_sd    0.014
  18   ratio_ys_median    0.222
  19      ratio_ys_p25    0.220
  20      ratio_ys_p75    0.228
  21       ratio_ys_p0    0.216
  22     ratio_ys_p100    0.270
  23   prob_conclusive    1.000
  24     prob_superior    1.000
  25  prob_equivalence    0.000
  26     prob_futility    0.000
  27          prob_max    0.000
  28 prob_select_arm_A    0.000
  29 prob_select_arm_B    1.000
  30 prob_select_arm_C    0.000
  31  prob_select_none    0.000
  32              rmse    0.020
  33           rmse_te       NA
  34               mae    0.009
  35            mae_te       NA
  36               idp  100.000
Code
  check_performance(res, restrict = "superior", uncertainty = TRUE, boot_seed = "base",
    n_boot = 100)
Condition
  Warning:
  values for n_boot < 1000 are not recommended, as they may cause instable results.
Output
                metric      est  err_sd err_mad    lo_ci    hi_ci
  1       n_summarised   13.000   1.859   1.483    9.000   17.000
  2          size_mean 1084.615 123.986 130.963  849.643 1305.357
  3            size_sd  493.028  64.548  69.102  347.577  597.946
  4        size_median 1200.000 231.802   0.000  600.000 1376.250
  5           size_p25  600.000 244.294 148.260  500.000 1200.000
  6           size_p75 1400.000 172.379 148.260 1200.000 1639.375
  7            size_p0  400.000      NA      NA       NA       NA
  8          size_p100 1900.000      NA      NA       NA       NA
  9        sum_ys_mean  244.000  27.085  28.637  193.007  292.815
  10         sum_ys_sd  107.973  13.743  13.825   75.508  129.319
  11     sum_ys_median  266.000  50.890  10.378  135.000  301.100
  12        sum_ys_p25  135.000  50.145  23.351  110.000  265.762
  13        sum_ys_p75  303.000  38.952  26.872  266.000  372.000
  14         sum_ys_p0   94.000      NA      NA       NA       NA
  15       sum_ys_p100  420.000      NA      NA       NA       NA
  16     ratio_ys_mean    0.227   0.004   0.004    0.221    0.236
  17       ratio_ys_sd    0.014   0.006   0.006    0.003    0.022
  18   ratio_ys_median    0.222   0.003   0.001    0.220    0.229
  19      ratio_ys_p25    0.220   0.001   0.001    0.218    0.222
  20      ratio_ys_p75    0.228   0.008   0.004    0.222    0.253
  21       ratio_ys_p0    0.216      NA      NA       NA       NA
  22     ratio_ys_p100    0.270      NA      NA       NA       NA
  23   prob_conclusive    1.000   0.000   0.000    1.000    1.000
  24     prob_superior    1.000   0.000   0.000    1.000    1.000
  25  prob_equivalence    0.000   0.000   0.000    0.000    0.000
  26     prob_futility    0.000   0.000   0.000    0.000    0.000
  27          prob_max    0.000   0.000   0.000    0.000    0.000
  28 prob_select_arm_A    0.000   0.000   0.000    0.000    0.000
  29 prob_select_arm_B    1.000   0.000   0.000    1.000    1.000
  30 prob_select_arm_C    0.000   0.000   0.000    0.000    0.000
  31  prob_select_none    0.000   0.000   0.000    0.000    0.000
  32              rmse    0.020   0.003   0.004    0.013    0.025
  33           rmse_te       NA      NA      NA       NA       NA
  34               mae    0.009   0.005   0.003    0.006    0.025
  35            mae_te       NA      NA      NA       NA       NA
  36               idp  100.000   0.000   0.000  100.000  100.000
Code
  check_performance(res, restrict = "selected", uncertainty = TRUE, boot_seed = "base",
    n_boot = 100)
Condition
  Warning:
  values for n_boot < 1000 are not recommended, as they may cause instable results.
Output
                metric      est  err_sd err_mad    lo_ci    hi_ci
  1       n_summarised   13.000   1.859   1.483    9.000   17.000
  2          size_mean 1084.615 123.986 130.963  849.643 1305.357
  3            size_sd  493.028  64.548  69.102  347.577  597.946
  4        size_median 1200.000 231.802   0.000  600.000 1376.250
  5           size_p25  600.000 244.294 148.260  500.000 1200.000
  6           size_p75 1400.000 172.379 148.260 1200.000 1639.375
  7            size_p0  400.000      NA      NA       NA       NA
  8          size_p100 1900.000      NA      NA       NA       NA
  9        sum_ys_mean  244.000  27.085  28.637  193.007  292.815
  10         sum_ys_sd  107.973  13.743  13.825   75.508  129.319
  11     sum_ys_median  266.000  50.890  10.378  135.000  301.100
  12        sum_ys_p25  135.000  50.145  23.351  110.000  265.762
  13        sum_ys_p75  303.000  38.952  26.872  266.000  372.000
  14         sum_ys_p0   94.000      NA      NA       NA       NA
  15       sum_ys_p100  420.000      NA      NA       NA       NA
  16     ratio_ys_mean    0.227   0.004   0.004    0.221    0.236
  17       ratio_ys_sd    0.014   0.006   0.006    0.003    0.022
  18   ratio_ys_median    0.222   0.003   0.001    0.220    0.229
  19      ratio_ys_p25    0.220   0.001   0.001    0.218    0.222
  20      ratio_ys_p75    0.228   0.008   0.004    0.222    0.253
  21       ratio_ys_p0    0.216      NA      NA       NA       NA
  22     ratio_ys_p100    0.270      NA      NA       NA       NA
  23   prob_conclusive    1.000   0.000   0.000    1.000    1.000
  24     prob_superior    1.000   0.000   0.000    1.000    1.000
  25  prob_equivalence    0.000   0.000   0.000    0.000    0.000
  26     prob_futility    0.000   0.000   0.000    0.000    0.000
  27          prob_max    0.000   0.000   0.000    0.000    0.000
  28 prob_select_arm_A    0.000   0.000   0.000    0.000    0.000
  29 prob_select_arm_B    1.000   0.000   0.000    1.000    1.000
  30 prob_select_arm_C    0.000   0.000   0.000    0.000    0.000
  31  prob_select_none    0.000   0.000   0.000    0.000    0.000
  32              rmse    0.020   0.003   0.004    0.013    0.025
  33           rmse_te       NA      NA      NA       NA       NA
  34               mae    0.009   0.005   0.003    0.006    0.025
  35            mae_te       NA      NA      NA       NA       NA
  36               idp  100.000   0.000   0.000  100.000  100.000


INCEPTdk/adaptr documentation built on May 7, 2024, 8:21 a.m.