MARVIS

DOI LGTM Alerts GitHub language count GitHub top language GitHub all releases GitHub R package version GitHub release (latest by date) GitHub contributors GitHub last commit GitHub Release Date Maintenance GitHub repo size GitHub code size in bytes Lines of code CRAN/METACRAN ![License: CC BY-NC-ND 4.0](https://img.shields.io/badge/Artwork License-CC_BY--NC--ND_4.0-lightgrey.svg) ![License: GPL v3](https://img.shields.io/badge/Code License-GPLv3-blue.svg)
Creative Commons License
This Artwork is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

MARVIS: Meta Analysis in R via Shiny v0.1.0

August 10, 2021 * Version 0.1.0 has been sent to Github and can be found here https://github.com/IbrahimHE/MARVIS

List of Packages Used

library(shiny)
library(shinyjs)
library(DT)
library(colourpicker)
library(meta)
library(metafor)
library(tools)
library(readxl)
library(stringr)
library(poibin)
library(gridExtra)
library(ggplot2)
library(ggrepel)
library(fpc)
library(mclust)
library(shinyFeedback)

Acknowledgments and Authors

Acknowledgments

Ibrahim H. Elkhidir would like to thank Kahil H. Elkhidir, Awam H. Elkhidir, Dareen H. Elkhidir, Dorar H. Elkhidir for their comments and beta testing efforts on this application as well as Sana Ibrahim and Hassan Eldaw for her feedback and evaluation of the statistical methods related to this project.

Ibrahim H. Elkhidir would like to thank Mohammed Nimmir, Mohammed S. Muneer,Shahd S. Ali, Waad K. Shanan,Hussein Jaafar, Duaa M. for their support and feedback to create this web application.

Authors

Author logo

Ibrahim H. Elkhidir wrote the first version of this application; this application is a fork of the original which can be found here.
Ibrahim H. Elkhidir maintains this application and has authored new features.

Ibrahim H. Elkhidir - University of Khartoum, Sudan

# SMD <- metafor::dat.normand1999
# colnames(SMD) <- c("Study","source",'n.e' ,'mean.e', 'sd.e', 'n.c' ,'mean.c', 'sd.c')
# SMDmeta <- meta::metacont(
#   mean.e = mean.e, sd.e = sd.e, n.e= n.e,
#   mean.c= mean.c, sd.c = sd.c, n.c = n.c,
#   data = SMD, sm = 'SMD'
#   )
# g <- dmetar::eggers.test(SMDmeta)
# df <- data.frame(
#          intercept <- c(g$intercept),
#          t <- c(g$t),
#          p <- c(g$p),
#          `95% CI` <- c(g$llci, g$ulci))
# colnames(df) <- c('intercept','95% CI','t','p')
# knitr::kable(df)


Ibrahimhassan94/MAAS documentation built on Feb. 24, 2022, 8:14 a.m.