knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The goal of this package is to apply t-tests and basic data description across several sub-groups, with the output being a nice arranged data.frame
instead of detailed listed information. Multiple comparison and significance symbols are wrapped in as options.
This kind of analyses are commonly seen in ROI (Region-of-interest) analyses for brain imaging data and this is why the package is called roistats
.
You can install the released version of roistats from CRAN with:
install.packages("roistats")
And the development version from GitHub with:
# install.packages("devtools") devtools::install_github("Irisfee/roistats")
See Get Started page for detailed usage
library(roistats) library(dplyr) color_index %>% group_by(roi_id) %>% df_sem(color_index)
color_index %>% group_by(roi_id) %>% t_test_one_sample(color_index)
color_index_one_sample_t_with_sig <- color_index %>% group_by(roi_id) %>% t_test_one_sample(color_index, p_adjust = c("bonferroni","fdr")) %>% mutate(sig_origin_p = p_range(p)) knitr::kable(color_index_one_sample_t_with_sig, digits = 3)
color_index_two_sample %>% group_by(roi_id) %>% t_test_two_sample(x = color_effect, y = group, paired = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.