community.licodIteratif: Iteratif Licod community detection algorithm

Description Usage Arguments Value Author(s) References Examples

Description

This applies the iterative version of the Licod algorithm as described in VCSJ 2014 (Yakoubi and Kanawati, 2014)

Usage

1
community.licodIteratif(graph, sigma, centrality1, centrality2, delta, vote_fun, sim_fun, memb_fun, verbose, max_iter)

Arguments

graph

: The input igraph graph

sigma

: is a threshold in [0; 1]. It is used to know if a node is a leader.

centrality1

: is a topological centrality in graphs as degree, closeness, betweenness...

centrality2

: is a topological centrality in graphs as degree, closeness, betweenness...

delta

: is a threshold in [0; 1]. Two leaders are linked if their topological similarity is above delta.

vote_fun

: The vote function that should be used to compute the membership vector.

sim_fun

: is the similarity function. i.e similarity.invlogweighted, similarity.jaccard, similarity.dice,...

memb_fun

: is the membership function i.e mean, sum, ...

verbose

: verbose

max_iter

: max number of iterations if not stablized

Value

returns an igraph communities object, please see igraph manual page for details.

Author(s)

Issam Falih <issam.falih@lipn.univ-paris13.fr>

References

Yakoubi, Z. et R. Kanawati (2014). Licod : Leader-driven approaches for community detection. Vietnam Journal of Computer Science - Springer 1, 241-256.

Examples

1
2
3
4
5
g <- graph.famous("Zachary")
wt <- community.licodIteratif(g)
 V(g)$color <- wt$membership+1
 g$layout <- layout.fruchterman.reingold
 plot(g, vertex.label=NA)

Issamfalih/MUNA documentation built on May 8, 2019, 11:52 a.m.