View source: R/GeneScan3DKnock.R
GeneScan3D.KnockoffGeneration | R Documentation |
This function generates multiple knockoff genotypes for a gene and the corresponding regulatory elements based on an auto-regressive model. Additionally, it computes p-values from the GeneScan3D test for a gene based on the original data, and each of the knockoff replicates. The knockoff generations are optimized using shrinkage leveraging algorithm.
GeneScan3D.KnockoffGeneration(
G_gene_buffer_surround = G_gene_buffer_surround,
variants_gene_buffer_surround = variants_gene_buffer_surround,
gene_buffer.pos = gene_buffer.pos,
promoter.pos = promoter.pos,
R = 2,
G_EnhancerAll_surround = G_EnhancerAll_surround,
variants_EnhancerAll_surround = variants_EnhancerAll_surround,
p_EnhancerAll_surround = p_EnhancerAll_surround,
Enhancer.pos = Enhancer.pos,
p.EnhancerAll = p_EnhancerAll,
Z = Z_gene_buffer,
Z.promoter = Z_promoter,
Z.EnhancerAll = Z_EnhancerAll,
window.size = c(1000, 5000, 10000),
MAC.threshold = 10,
MAF.threshold = 0.01,
Gsub.id = NULL,
result.null.model = result.null.model,
M = 5
)
G_gene_buffer_surround |
The genotype matrix of the surrounding region for gene buffer region. |
variants_gene_buffer_surround |
The genetic variants in the surrounding region for gene buffer region. Each position corresponds to a column in the genotype matrix G_gene_buffer_surround. |
gene_buffer.pos |
The start and end positions of gene buffer region. |
promoter.pos |
The start and end positions of promoter. |
R |
Number of enhancers. |
G_EnhancerAll_surround |
The genotype matrix of the surrounding regions for R enhancers, by combining the genotype matrix of the surrounding regions for each enhancer by columns. |
variants_EnhancerAll_surround |
The genetic variants in the surrounding region for R enhancers. Each position corresponds to a column in the genotype matrix G_EnhancerAll_surround. |
p_EnhancerAll_surround |
Number of genetic variants in the surrounding region for R enhancers, which is a 1*R vector. |
Enhancer.pos |
The start and end positions for R enhancers. One row represents one enhancer, which is a R by 2 matrix. |
p.EnhancerAll |
Number of genetic variants in R enhancers, which is a 1*R vector. |
Z |
A p*q functional annotation matrix, where p is the number of genetic variants in the gene buffer region and q is the number of functional annotations. If Z is NULL (do not incorporate any functional annotations), the minor allele frequency weighted dispersion and/or burden tests are applied. Specifically, Beta(MAF; 1; 25) weights are used for rare variants and weights one are used for common variants. |
Z.promoter |
The functional annotation matrix for promoter. Z.promoter can be NULL. |
Z.EnhancerAll |
The functional annotation matrix for R enhancers, by combining the functional annotation matrix of each enhancer by rows. Z.EnhancerAll can be NULL. |
window.size |
The 1-D window sizes in base pairs to scan the gene buffer region. The recommended window sizes are c(1000,5000,10000). |
MAC.threshold |
Threshold for minor allele count. Variants below MAC.threshold are ultra-rare variants. The recommended level is 10. |
MAF.threshold |
Threshold for minor allele frequency. Variants below MAF.threshold are rare variants. The recommended level is 0.01. |
Gsub.id |
The subject id corresponding to the genotype matrix, an n dimensional vector. The default is NULL, where the matched phenotype and genotype matrices are assumed. |
result.null.model |
The output of function "GeneScan.Null.Model()". |
M |
Numer of multiple knockoffs. |
GeneScan3D.Cauchy |
GeneScan3D p-values of all, common and rare variants for original genotypes. |
GeneScan3D.Cauchy_knockoff |
A M by 3 GeneScan3D p-values matrix of all, common and rare variants for M knockoff genotypes. |
library(GeneScan3DKnock)
data(KnockoffGeneration.example)
Y=KnockoffGeneration.example$Y; X=KnockoffGeneration.example$X;
G_gene_buffer_surround=KnockoffGeneration.example$G_gene_buffer_surround
variants_gene_buffer_surround=KnockoffGeneration.example$variants_gene_buffer_surround
G_Enhancer1_surround=KnockoffGeneration.example$G_Enhancer1_surround
variants_Enhancer1_surround=KnockoffGeneration.example$variants_Enhancer1_surround
G_Enhancer2_surround=KnockoffGeneration.example$G_Enhancer2_surround
variants_Enhancer2_surround=KnockoffGeneration.example$variants_Enhancer2_surround
gene_buffer.pos=KnockoffGeneration.example$gene_buffer.pos
promoter.pos=KnockoffGeneration.example$promoter.pos
Enhancer1.pos=KnockoffGeneration.example$Enhancer1.pos
Enhancer2.pos=KnockoffGeneration.example$Enhancer2.pos
Z_gene_buffer=KnockoffGeneration.example$Z_gene_buffer
Z_promoter=KnockoffGeneration.example$Z_promoter
Z_Enhancer1=KnockoffGeneration.example$Z_Enhancer1
Z_Enhancer2=KnockoffGeneration.example$Z_Enhancer2
G_EnhancerAll_surround=cbind(G_Enhancer1_surround,G_Enhancer2_surround)
variants_EnhancerAll_surround=c(variants_Enhancer1_surround,variants_Enhancer2_surround)
p_EnhancerAll_surround=c(length(variants_Enhancer1_surround),length(variants_Enhancer2_surround))
Enhancer.pos=rbind(Enhancer1.pos,Enhancer2.pos)
p_EnhancerAll=c(dim(Z_Enhancer1)[1],dim(Z_Enhancer2)[1])
Z_EnhancerAll=rbind(Z_Enhancer1,Z_Enhancer2)
set.seed(12345)
result.null.model=GeneScan.Null.Model(Y, X, out_type="C", B=1000)
result.GeneScan3D.KnockoffGeneration=GeneScan3D.KnockoffGeneration(
G_gene_buffer_surround=G_gene_buffer_surround,
variants_gene_buffer_surround=variants_gene_buffer_surround,
gene_buffer.pos=gene_buffer.pos,
promoter.pos=promoter.pos,
R=2,
G_EnhancerAll_surround=G_EnhancerAll_surround,
variants_EnhancerAll_surround=variants_EnhancerAll_surround,
p_EnhancerAll_surround=p_EnhancerAll_surround,
Enhancer.pos=Enhancer.pos,
p.EnhancerAll=p_EnhancerAll,
Z=Z_gene_buffer,
Z.promoter=Z_promoter,
Z.EnhancerAll=Z_EnhancerAll,
window.size=c(1000,5000,10000),
MAC.threshold=10,
MAF.threshold=0.01,
Gsub.id=NULL,
result.null.model=result.null.model,
M=5)
result.GeneScan3D.KnockoffGeneration$GeneScan3D.Cauchy
result.GeneScan3D.KnockoffGeneration$GeneScan3D.Cauchy_knockoff
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.