matdep: Function to compute the multivariate dependency matrix

View source: R/corr.R

matdepR Documentation

Function to compute the multivariate dependency matrix

Description

Function to compute the multivariate dependency matrix

Usage

matdep(
  data,
  methods = NULL,
  all = FALSE,
  thred = -Inf,
  wd = 1,
  trial = 0,
  ncores = NULL,
  norm = FALSE,
  abs = FALSE,
  info = "",
  dir = "./dat/"
)

Arguments

data:

feature by sample matrix

methods:

a vector of strings, could be subset of c('pearson','kendall','taustar','dcor','hsic','hoeffd','ssd')

all:

logical value, if true then compute for all methods in c('pearson','kendall','taustar','dcor','hsic','hoeffd','ssd')

thred:

only the data > thred will be used

wd:

the coefficient before the bandwidth h = wd*h_n

qd:

the quantile window to compute the adaptive bandwidth h_x = sd(x(qd))

info:

integer denote the trial number

ncores:

number of cores to use

norm:

whether scale the value to [0,1]

abs:

whether take absolute value of the value

extrainfo:

some setting related information

Value

a list of matrix

Examples

# Load example data
ans = matdep(runif(100,5,20), methods='ssd')

JINJINT/aLDG documentation built on April 1, 2022, 6:23 p.m.